Cargando…
Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG)
BACKGROUND: Brain-machine interfaces (BMIs) allow direct translation of electric, magnetic or metabolic brain signals into control commands of external devices such as robots, prostheses or exoskeletons. However, non-stationarity of brain signals and susceptibility to biological or environmental art...
Autores principales: | Witkowski, Matthias, Cortese, Mario, Cempini, Marco, Mellinger, Jürgen, Vitiello, Nicola, Soekadar, Surjo R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274709/ https://www.ncbi.nlm.nih.gov/pubmed/25510922 http://dx.doi.org/10.1186/1743-0003-11-165 |
Ejemplares similares
-
Analysis of relative displacement between the HX wearable robotic exoskeleton and the user’s hand
por: Cempini, Marco, et al.
Publicado: (2014) -
Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living
por: Crea, Simona, et al.
Publicado: (2018) -
Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification
por: Martínez-Cerveró, Jayro, et al.
Publicado: (2020) -
Feasibility and Safety of Bilateral Hybrid EEG/EOG Brain/Neural–Machine Interaction
por: Nann, Marius, et al.
Publicado: (2020) -
Brain–Computer Interface-Controlled Exoskeletons in Clinical Neurorehabilitation: Ready or Not?
por: Colucci, Annalisa, et al.
Publicado: (2022)