Cargando…

Lithium Diisopropylamide-Mediated Lithiation of 1,4-Difluorobenzene under Nonequilibrium Conditions: Role of Monomer-, Dimer-, and Tetramer-Based Intermediates and Lessons about Rate Limitation

[Image: see text] Lithiation of 1,4-difluorobenzene with lithium diisopropylamide (LDA) in THF at −78 °C joins the ranks of a growing number of metalations that occur under conditions in which the rates of aggregate exchanges are comparable to the rates of metalation. As such, a substantial number o...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Jun, Hoepker, Alexander C., Bruneau, Angela M., Ma, Yun, Gupta, Lekha, Collum, David B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275155/
https://www.ncbi.nlm.nih.gov/pubmed/25000303
http://dx.doi.org/10.1021/jo501392r
Descripción
Sumario:[Image: see text] Lithiation of 1,4-difluorobenzene with lithium diisopropylamide (LDA) in THF at −78 °C joins the ranks of a growing number of metalations that occur under conditions in which the rates of aggregate exchanges are comparable to the rates of metalation. As such, a substantial number of barriers vie for rate limitation. Rate studies reveal that rate-limiting steps and even the choice of reaction coordinate depend on subtle variations in concentration. Deuteration shifts the rate-limiting step and markedly alters the concentration dependencies and overall rate law. This narrative is less about ortholithiation per se and more about rate limitation and the dynamics of LDA aggregate exchange.