Cargando…
Sparse network-based models for patient classification using fMRI
Pattern recognition applied to whole-brain neuroimaging data, such as functional Magnetic Resonance Imaging (fMRI), has proved successful at discriminating psychiatric patients from healthy participants. However, predictive patterns obtained from whole-brain voxel-based features are difficult to int...
Autores principales: | Rosa, Maria J., Portugal, Liana, Hahn, Tim, Fallgatter, Andreas J., Garrido, Marta I., Shawe-Taylor, John, Mourao-Miranda, Janaina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275574/ https://www.ncbi.nlm.nih.gov/pubmed/25463459 http://dx.doi.org/10.1016/j.neuroimage.2014.11.021 |
Ejemplares similares
-
A multiple hold-out framework for Sparse Partial Least Squares
por: Monteiro, João M., et al.
Publicado: (2016) -
Combining heterogeneous data sources for neuroimaging based diagnosis: re-weighting and selecting what is important
por: Donini, Michele, et al.
Publicado: (2019) -
Brain State Decoding Based on fMRI Using Semisupervised Sparse Representation Classifications
por: Zhang, Jing, et al.
Publicado: (2018) -
A Sparse EEG-Informed fMRI Model for Hybrid EEG-fMRI Neurofeedback Prediction
por: Cury, Claire, et al.
Publicado: (2020) -
Multiclass Sparse Bayesian Regression for fMRI-Based Prediction
por: Michel, Vincent, et al.
Publicado: (2011)