Cargando…
Cheminformatics Models for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase
Schistosomiasis is a neglected tropical disease caused by a parasite Schistosoma mansoni and affects over 200 million annually. There is an urgent need to discover novel therapeutic options to control the disease with the recent emergence of drug resistance. The multifunctional protein, thioredoxin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275605/ https://www.ncbi.nlm.nih.gov/pubmed/25629082 http://dx.doi.org/10.1155/2014/957107 |
_version_ | 1782350151249035264 |
---|---|
author | Gaba, Sonam Jamal, Salma Open Source Drug Discovery Consortium, Scaria, Vinod |
author_facet | Gaba, Sonam Jamal, Salma Open Source Drug Discovery Consortium, Scaria, Vinod |
author_sort | Gaba, Sonam |
collection | PubMed |
description | Schistosomiasis is a neglected tropical disease caused by a parasite Schistosoma mansoni and affects over 200 million annually. There is an urgent need to discover novel therapeutic options to control the disease with the recent emergence of drug resistance. The multifunctional protein, thioredoxin glutathione reductase (TGR), an essential enzyme for the survival of the pathogen in the redox environment has been actively explored as a potential drug target. The recent availability of small-molecule screening datasets against this target provides a unique opportunity to learn molecular properties and apply computational models for discovery of activities in large molecular libraries. Such a prioritisation approach could have the potential to reduce the cost of failures in lead discovery. A supervised learning approach was employed to develop a cost sensitive classification model to evaluate the biological activity of the molecules. Random forest was identified to be the best classifier among all the classifiers with an accuracy of around 80 percent. Independent analysis using a maximally occurring substructure analysis revealed 10 highly enriched scaffolds in the actives dataset and their docking against was also performed. We show that a combined approach of machine learning and other cheminformatics approaches such as substructure comparison and molecular docking is efficient to prioritise molecules from large molecular datasets. |
format | Online Article Text |
id | pubmed-4275605 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-42756052015-01-27 Cheminformatics Models for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase Gaba, Sonam Jamal, Salma Open Source Drug Discovery Consortium, Scaria, Vinod ScientificWorldJournal Research Article Schistosomiasis is a neglected tropical disease caused by a parasite Schistosoma mansoni and affects over 200 million annually. There is an urgent need to discover novel therapeutic options to control the disease with the recent emergence of drug resistance. The multifunctional protein, thioredoxin glutathione reductase (TGR), an essential enzyme for the survival of the pathogen in the redox environment has been actively explored as a potential drug target. The recent availability of small-molecule screening datasets against this target provides a unique opportunity to learn molecular properties and apply computational models for discovery of activities in large molecular libraries. Such a prioritisation approach could have the potential to reduce the cost of failures in lead discovery. A supervised learning approach was employed to develop a cost sensitive classification model to evaluate the biological activity of the molecules. Random forest was identified to be the best classifier among all the classifiers with an accuracy of around 80 percent. Independent analysis using a maximally occurring substructure analysis revealed 10 highly enriched scaffolds in the actives dataset and their docking against was also performed. We show that a combined approach of machine learning and other cheminformatics approaches such as substructure comparison and molecular docking is efficient to prioritise molecules from large molecular datasets. Hindawi Publishing Corporation 2014 2014-11-25 /pmc/articles/PMC4275605/ /pubmed/25629082 http://dx.doi.org/10.1155/2014/957107 Text en Copyright © 2014 Sonam Gaba et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gaba, Sonam Jamal, Salma Open Source Drug Discovery Consortium, Scaria, Vinod Cheminformatics Models for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase |
title | Cheminformatics Models for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase |
title_full | Cheminformatics Models for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase |
title_fullStr | Cheminformatics Models for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase |
title_full_unstemmed | Cheminformatics Models for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase |
title_short | Cheminformatics Models for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase |
title_sort | cheminformatics models for inhibitors of schistosoma mansoni thioredoxin glutathione reductase |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275605/ https://www.ncbi.nlm.nih.gov/pubmed/25629082 http://dx.doi.org/10.1155/2014/957107 |
work_keys_str_mv | AT gabasonam cheminformaticsmodelsforinhibitorsofschistosomamansonithioredoxinglutathionereductase AT jamalsalma cheminformaticsmodelsforinhibitorsofschistosomamansonithioredoxinglutathionereductase AT opensourcedrugdiscoveryconsortium cheminformaticsmodelsforinhibitorsofschistosomamansonithioredoxinglutathionereductase AT scariavinod cheminformaticsmodelsforinhibitorsofschistosomamansonithioredoxinglutathionereductase |