Cargando…
Integrative Bayesian variable selection with gene-based informative priors for genome-wide association studies
BACKGROUND: Genome-wide Association Studies (GWAS) are typically designed to identify phenotype-associated single nucleotide polymorphisms (SNPs) individually using univariate analysis methods. Though providing valuable insights into genetic risks of common diseases, the genetic variants identified...
Autores principales: | Zhang, Xiaoshuai, Xue, Fuzhong, Liu, Hong, Zhu, Dianwen, Peng, Bin, Wiemels, Joseph L, Yang, Xiaowei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275962/ https://www.ncbi.nlm.nih.gov/pubmed/25491445 http://dx.doi.org/10.1186/s12863-014-0130-7 |
Ejemplares similares
-
An Integrative Framework for Bayesian Variable Selection with Informative Priors for Identifying Genes and Pathways
por: Peng, Bin, et al.
Publicado: (2013) -
A PLSPM-Based Test Statistic for Detecting Gene-Gene Co-Association in Genome-Wide Association Study with Case-Control Design
por: Zhang, Xiaoshuai, et al.
Publicado: (2013) -
BGWAS: Bayesian variable selection in linear mixed models with nonlocal priors for genome-wide association studies
por: Williams, Jacob, et al.
Publicado: (2023) -
A Bayesian Integrative Model for Genetical Genomics with Spatially Informed Variable Selection
por: Cassese, Alberto, et al.
Publicado: (2014) -
Bayesian bi-level variable selection for genome-wide survival study
por: Lee, Eunjee, et al.
Publicado: (2023)