Cargando…
Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach
BACKGROUND: Forestomach fermentation in Australian marsupials such as wallabies and kangaroos, though analogous to rumen fermentation, results in lower methane emissions. Insights into hydrogenotrophy in these systems could help in devising strategies to reduce ruminal methanogenesis. Reductive acet...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275979/ https://www.ncbi.nlm.nih.gov/pubmed/25495654 http://dx.doi.org/10.1186/s12866-014-0314-3 |
_version_ | 1782350206046568448 |
---|---|
author | Gagen, Emma J Wang, Jiakun Padmanabha, Jagadish Liu, Jing de Carvalho, Isabela Pena Carvalho Liu, Jianxin Webb, Richard I Al Jassim, Rafat Morrison, Mark Denman, Stuart E McSweeney, Christopher S |
author_facet | Gagen, Emma J Wang, Jiakun Padmanabha, Jagadish Liu, Jing de Carvalho, Isabela Pena Carvalho Liu, Jianxin Webb, Richard I Al Jassim, Rafat Morrison, Mark Denman, Stuart E McSweeney, Christopher S |
author_sort | Gagen, Emma J |
collection | PubMed |
description | BACKGROUND: Forestomach fermentation in Australian marsupials such as wallabies and kangaroos, though analogous to rumen fermentation, results in lower methane emissions. Insights into hydrogenotrophy in these systems could help in devising strategies to reduce ruminal methanogenesis. Reductive acetogenesis may be a significant hydrogen sink in these systems and previous molecular analyses have revealed a novel diversity of putative acetogens in the tammar wallaby forestomach. RESULTS: Methanogen-inhibited enrichment cultures prepared from tammar wallaby forestomach contents consumed hydrogen and produced primarily acetate. Functional gene (formyltetrahydrofolate synthetase and acetyl-CoA synthase) analyses revealed a restricted diversity of Clostridiales species as the putative acetogens in the cultures. A new acetogen (growth on H(2)/CO(2) with acetate as primary end product) designated isolate TWA4, was obtained from the cultures. Isolate TWA4 classified within the Lachnospiraceae and demonstrated >97% rrs identity to previously isolated kangaroo acetogens. Isolate TWA4 was a potent hydrogenotroph and demonstrated excellent mixotrophic growth (concomitant consumption of hydrogen during heterotrophic growth) with glycerol. Mixotrophic growth of isolate TWA4 on glycerol resulted in increased cell densities and acetate production compared to autotrophic growth. Co-cultures with an autotrophic methanogen Methanobrevibacter smithii revealed that isolate TWA4 performed reductive acetogenesis under high hydrogen concentration (>5 mM), but not at low concentrations. Under heterotrophic growth conditions, isolate TWA4 did not significantly stimulate methanogenesis in a co-culture with M. smithii contrary to the expectation for organisms growing fermentatively. CONCLUSIONS: The unique properties of tammar wallaby acetogens might be contributing factors to reduced methanogen numbers and methane emissions from tammar wallaby forestomach fermentation, compared to ruminal fermentation. The macropod forestomach may be a useful source of acetogens for future strategies to reduce methane emissions from ruminants, particularly if these strategies also include some level of methane suppression and/or acetogen stimulation, for example by harnessing mixotrophic growth capabilities ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12866-014-0314-3) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4275979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42759792014-12-25 Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach Gagen, Emma J Wang, Jiakun Padmanabha, Jagadish Liu, Jing de Carvalho, Isabela Pena Carvalho Liu, Jianxin Webb, Richard I Al Jassim, Rafat Morrison, Mark Denman, Stuart E McSweeney, Christopher S BMC Microbiol Research Article BACKGROUND: Forestomach fermentation in Australian marsupials such as wallabies and kangaroos, though analogous to rumen fermentation, results in lower methane emissions. Insights into hydrogenotrophy in these systems could help in devising strategies to reduce ruminal methanogenesis. Reductive acetogenesis may be a significant hydrogen sink in these systems and previous molecular analyses have revealed a novel diversity of putative acetogens in the tammar wallaby forestomach. RESULTS: Methanogen-inhibited enrichment cultures prepared from tammar wallaby forestomach contents consumed hydrogen and produced primarily acetate. Functional gene (formyltetrahydrofolate synthetase and acetyl-CoA synthase) analyses revealed a restricted diversity of Clostridiales species as the putative acetogens in the cultures. A new acetogen (growth on H(2)/CO(2) with acetate as primary end product) designated isolate TWA4, was obtained from the cultures. Isolate TWA4 classified within the Lachnospiraceae and demonstrated >97% rrs identity to previously isolated kangaroo acetogens. Isolate TWA4 was a potent hydrogenotroph and demonstrated excellent mixotrophic growth (concomitant consumption of hydrogen during heterotrophic growth) with glycerol. Mixotrophic growth of isolate TWA4 on glycerol resulted in increased cell densities and acetate production compared to autotrophic growth. Co-cultures with an autotrophic methanogen Methanobrevibacter smithii revealed that isolate TWA4 performed reductive acetogenesis under high hydrogen concentration (>5 mM), but not at low concentrations. Under heterotrophic growth conditions, isolate TWA4 did not significantly stimulate methanogenesis in a co-culture with M. smithii contrary to the expectation for organisms growing fermentatively. CONCLUSIONS: The unique properties of tammar wallaby acetogens might be contributing factors to reduced methanogen numbers and methane emissions from tammar wallaby forestomach fermentation, compared to ruminal fermentation. The macropod forestomach may be a useful source of acetogens for future strategies to reduce methane emissions from ruminants, particularly if these strategies also include some level of methane suppression and/or acetogen stimulation, for example by harnessing mixotrophic growth capabilities ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12866-014-0314-3) contains supplementary material, which is available to authorized users. BioMed Central 2014-12-11 /pmc/articles/PMC4275979/ /pubmed/25495654 http://dx.doi.org/10.1186/s12866-014-0314-3 Text en © Gagen et al.; licensee BioMed Central. 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Gagen, Emma J Wang, Jiakun Padmanabha, Jagadish Liu, Jing de Carvalho, Isabela Pena Carvalho Liu, Jianxin Webb, Richard I Al Jassim, Rafat Morrison, Mark Denman, Stuart E McSweeney, Christopher S Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach |
title | Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach |
title_full | Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach |
title_fullStr | Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach |
title_full_unstemmed | Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach |
title_short | Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach |
title_sort | investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275979/ https://www.ncbi.nlm.nih.gov/pubmed/25495654 http://dx.doi.org/10.1186/s12866-014-0314-3 |
work_keys_str_mv | AT gagenemmaj investigationofanewacetogenisolatedfromanenrichmentofthetammarwallabyforestomach AT wangjiakun investigationofanewacetogenisolatedfromanenrichmentofthetammarwallabyforestomach AT padmanabhajagadish investigationofanewacetogenisolatedfromanenrichmentofthetammarwallabyforestomach AT liujing investigationofanewacetogenisolatedfromanenrichmentofthetammarwallabyforestomach AT decarvalhoisabelapenacarvalho investigationofanewacetogenisolatedfromanenrichmentofthetammarwallabyforestomach AT liujianxin investigationofanewacetogenisolatedfromanenrichmentofthetammarwallabyforestomach AT webbrichardi investigationofanewacetogenisolatedfromanenrichmentofthetammarwallabyforestomach AT aljassimrafat investigationofanewacetogenisolatedfromanenrichmentofthetammarwallabyforestomach AT morrisonmark investigationofanewacetogenisolatedfromanenrichmentofthetammarwallabyforestomach AT denmanstuarte investigationofanewacetogenisolatedfromanenrichmentofthetammarwallabyforestomach AT mcsweeneychristophers investigationofanewacetogenisolatedfromanenrichmentofthetammarwallabyforestomach |