Cargando…

Molecular Mechanism of Yisui Shengxue Granule, a Complex Chinese Medicine, on Thalassemia Patients Suffering from Hemolysis and Anemia of Erythrocytes

The objective of this study was to investigate the therapeutic biological mechanism of Yisui Shengxue Granule (YSSXG), a complex Chinese medicine, on the hemolysis and anemia of erythrocytes from patient with thalassemia disease. Sixteen patients with thalassemia (8 cases of α-thalassemia and 8 case...

Descripción completa

Detalles Bibliográficos
Autores principales: Chu, Na-Li, Wu, Zhi-kui, Zhang, Xin-Hua, Fang, Su-Ping, Wang, Wen-Juan, Cheng, Yan-Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4276282/
https://www.ncbi.nlm.nih.gov/pubmed/25574177
http://dx.doi.org/10.1155/2014/213782
Descripción
Sumario:The objective of this study was to investigate the therapeutic biological mechanism of Yisui Shengxue Granule (YSSXG), a complex Chinese medicine, on the hemolysis and anemia of erythrocytes from patient with thalassemia disease. Sixteen patients with thalassemia (8 cases of α-thalassemia and 8 cases of β-thalassemia) disease were collected and treated with YSSXG for 3 months. The improvements of blood parameter demonstrated that YSSXG had a positive clinical effect on patients with thalassemia disease. For patients with α-thalassemia disease, RT-PCR showed that YSSXG upregulated the relative mRNA expression level of α-globin to β-globin and downregulated DNMT1, DNMT3a, and DNMT3b mRNA compared with pretreatment. Western blotting showed that YSSXG downregulated the expression of DNMT1 and DNMT3a. For patients with β-thalassemia disease, the relative expression level of (A) γ-globin to α-globin had an increasing trend and the level of BCL11A mRNA expression obviously increased. For all patients, RT-PCR showed that YSSXG upregulated mRNA expression of SPTA1 and SPTB. Activities of SOD and GSH-Px significantly increased and MDA obviously reduced on erythrocyte and blood serum after YSSXG treatment. TEM showed that YSSXG decreased the content of inclusion bodies. Activities of Na(+)K(+)-ATPtase and T-ATPtase of erythrocyte increased significantly after YSSXG treatment. This study provides the basis for mechanisms of YSSXG on thalassemia suffering with hemolysis and anemia of erythrocytes from patient.