Cargando…
A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature Forecasts
Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental...
Autores principales: | Bal, Guillaume, Rivot, Etienne, Baglinière, Jean-Luc, White, Jonathan, Prévost, Etienne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277306/ https://www.ncbi.nlm.nih.gov/pubmed/25541732 http://dx.doi.org/10.1371/journal.pone.0115659 |
Ejemplares similares
-
Simple Bayesian reconstruction and forecasting of stream water temperature for ecologists—A tool using air temperature, optionally flow, in a time series decomposition approach
por: Bal, Guillaume, et al.
Publicado: (2023) -
Quantifying Uncertainty of the Estimated Visual Acuity Behavioral Function With Hierarchical Bayesian Modeling
por: Zhao, Yukai, et al.
Publicado: (2021) -
Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data
por: McDermott, Patrick L., et al.
Publicado: (2019) -
Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting
por: Murad, Abdulmajid, et al.
Publicado: (2021) -
Quantifying uncertainty in brain network measures using Bayesian connectomics
por: Janssen, Ronald J., et al.
Publicado: (2014)