Cargando…
Postural Sway and Motor Control in Trans-Tibial Amputees as Assessed by Electroencephalography during Eight Balance Training Tasks
BACKGROUND: The purpose of this study was to investigate the changes in the Power Spectral Density (PSD) of the electroencephalogram (EEG) during 8 common sensorimotor balance training tasks of varying difficulty in single-limb trans-tibial amputees. MATERIAL/METHODS: Eight sensorimotor balance exer...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278698/ https://www.ncbi.nlm.nih.gov/pubmed/25515646 http://dx.doi.org/10.12659/MSM.891361 |
_version_ | 1782350555026292736 |
---|---|
author | Petrofsky, Jerrold Scott Khowailed, Iman Akef |
author_facet | Petrofsky, Jerrold Scott Khowailed, Iman Akef |
author_sort | Petrofsky, Jerrold Scott |
collection | PubMed |
description | BACKGROUND: The purpose of this study was to investigate the changes in the Power Spectral Density (PSD) of the electroencephalogram (EEG) during 8 common sensorimotor balance training tasks of varying difficulty in single-limb trans-tibial amputees. MATERIAL/METHODS: Eight sensorimotor balance exercises, including alteration in vision, base of support, and surface compliance, were used to test postural control and how it related to the electroencephalogram (EEG). A control group was compared to a group of people with trans-tibial amputation of 1 leg to see how the brain responds to loss of a single limb during progressively harder balance testing. Postural sway and EEG changes of the alpha, beta, and sigma wave bands were measured in 20 participants (10 controls, 10 amputees) during 8 balance tasks of varying difficulty with eyes open and closed, feet in tandem or apart, and on a foam or a firm surface. RESULTS: The power of alpha, beta, and sigma bands increased significantly in most tests when comparing the amputees to the control subjects. Balance was significantly worse in the amputees even when standing on both legs. In amputees, balance required more cortical activity than in the controls. CONCLUSIONS: This study demonstrated that amputees have considerably more difficulty in motor control for the brain during balance tasks. Balance was impaired even when standing feet apart on 2 legs and EEG showed more spectral power in all areas of the brain in the amputees. |
format | Online Article Text |
id | pubmed-4278698 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | International Scientific Literature, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-42786982014-12-30 Postural Sway and Motor Control in Trans-Tibial Amputees as Assessed by Electroencephalography during Eight Balance Training Tasks Petrofsky, Jerrold Scott Khowailed, Iman Akef Med Sci Monit Clinical Research BACKGROUND: The purpose of this study was to investigate the changes in the Power Spectral Density (PSD) of the electroencephalogram (EEG) during 8 common sensorimotor balance training tasks of varying difficulty in single-limb trans-tibial amputees. MATERIAL/METHODS: Eight sensorimotor balance exercises, including alteration in vision, base of support, and surface compliance, were used to test postural control and how it related to the electroencephalogram (EEG). A control group was compared to a group of people with trans-tibial amputation of 1 leg to see how the brain responds to loss of a single limb during progressively harder balance testing. Postural sway and EEG changes of the alpha, beta, and sigma wave bands were measured in 20 participants (10 controls, 10 amputees) during 8 balance tasks of varying difficulty with eyes open and closed, feet in tandem or apart, and on a foam or a firm surface. RESULTS: The power of alpha, beta, and sigma bands increased significantly in most tests when comparing the amputees to the control subjects. Balance was significantly worse in the amputees even when standing on both legs. In amputees, balance required more cortical activity than in the controls. CONCLUSIONS: This study demonstrated that amputees have considerably more difficulty in motor control for the brain during balance tasks. Balance was impaired even when standing feet apart on 2 legs and EEG showed more spectral power in all areas of the brain in the amputees. International Scientific Literature, Inc. 2014-12-17 /pmc/articles/PMC4278698/ /pubmed/25515646 http://dx.doi.org/10.12659/MSM.891361 Text en © Med Sci Monit, 2014 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License |
spellingShingle | Clinical Research Petrofsky, Jerrold Scott Khowailed, Iman Akef Postural Sway and Motor Control in Trans-Tibial Amputees as Assessed by Electroencephalography during Eight Balance Training Tasks |
title | Postural Sway and Motor Control in Trans-Tibial Amputees as Assessed by Electroencephalography during Eight Balance Training Tasks |
title_full | Postural Sway and Motor Control in Trans-Tibial Amputees as Assessed by Electroencephalography during Eight Balance Training Tasks |
title_fullStr | Postural Sway and Motor Control in Trans-Tibial Amputees as Assessed by Electroencephalography during Eight Balance Training Tasks |
title_full_unstemmed | Postural Sway and Motor Control in Trans-Tibial Amputees as Assessed by Electroencephalography during Eight Balance Training Tasks |
title_short | Postural Sway and Motor Control in Trans-Tibial Amputees as Assessed by Electroencephalography during Eight Balance Training Tasks |
title_sort | postural sway and motor control in trans-tibial amputees as assessed by electroencephalography during eight balance training tasks |
topic | Clinical Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278698/ https://www.ncbi.nlm.nih.gov/pubmed/25515646 http://dx.doi.org/10.12659/MSM.891361 |
work_keys_str_mv | AT petrofskyjerroldscott posturalswayandmotorcontrolintranstibialamputeesasassessedbyelectroencephalographyduringeightbalancetrainingtasks AT khowailedimanakef posturalswayandmotorcontrolintranstibialamputeesasassessedbyelectroencephalographyduringeightbalancetrainingtasks |