Cargando…

Demineralized Bone Matrix Combined Bone Marrow Mesenchymal Stem Cells, Bone Morphogenetic Protein-2 and Transforming Growth Factor-β3 Gene Promoted Pig Cartilage Defect Repair

OBJECTIVES: To investigate whether a combination of demineralized bone matrix (DBM) and bone marrow mesenchymal stem cells (BMSCs) infected with adenovirus-mediated- bone morphogenetic protein (Ad-BMP-2) and transforming growth factor-β3 (Ad-TGF-β3) promotes the repair of the full-thickness cartilag...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xin, Li, Yanlin, Han, Rui, He, Chuan, Wang, Guoliang, Wang, Jianwei, Zheng, Jiali, Pei, Mei, Wei, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278773/
https://www.ncbi.nlm.nih.gov/pubmed/25545777
http://dx.doi.org/10.1371/journal.pone.0116061
Descripción
Sumario:OBJECTIVES: To investigate whether a combination of demineralized bone matrix (DBM) and bone marrow mesenchymal stem cells (BMSCs) infected with adenovirus-mediated- bone morphogenetic protein (Ad-BMP-2) and transforming growth factor-β3 (Ad-TGF-β3) promotes the repair of the full-thickness cartilage lesions in pig model. METHODS: BMSCs isolated from pig were cultured and infected with Ad-BMP-2(B group), Ad-TGF-β3 (T group), Ad-BMP-2 + Ad-TGF-β3(BT group), cells infected with empty Ad served as a negative group(N group), the expression of the BMP-2 and TGF-β3 were confirmed by immunofluorescence, PCR, and ELISA, the expression of SOX-9, type II collagen(COL-2A), aggrecan (ACAN) in each group were evaluated by real-time PCR at 1w, 2w, 3w, respectively. The chondrogenic differentiation of BMSCs was evaluated by type II collagen at 21d with immunohistochemical staining. The third-passage BMSCs infected with Ad-BMP-2 and Ad-TGF-β3 were suspended and cultured with DBM for 6 days to construct a new type of tissue engineering scaffold to repair full-thickness cartilage lesions in the femur condyles of pig knee, the regenerated tissue was evaluated at 1,2 and 3 months after surgery by gross appearance, H&E, safranin O staining and O'driscoll score. RESULTS: Ad-BMP-2 and Ad-TGF-β3 (BT group) infected cells acquired strong type II collagen staining compared with Ad-BMP-2 (B group) and Ad-TGF-β3 (T group) along. The Ad-BMP-2 and Ad-TGF-β3 infected BMSCs adhered and propagated well in DBM and the new type of tissue engineering scaffold produced hyaline cartilage morphology containing a stronger type II collagen and safranin O staining, the O'driscoll score was higher than other groups. CONCLUSIONS: The DBM compound with Ad-BMP-2 and Ad-TGF-β3 infected BMSCs scaffold has a good biocompatibility and could well induce cartilage regeneration to repair the defects of joint cartilage. This technology may be efficiently employed for cartilage lesions repair in vivo.