Cargando…
Cardiac Mechanics and Ventricular Twist by Three-Dimensional Strain Analysis in Relation to B-Type Natriuretic Peptide as a Clinical Prognosticator for Heart Failure Patients
BACKGROUND: Three dimensional (3D) echocardiography-derived measurements of myocardial deformation and twist have recently advanced as novel clinical tools. However, with the exception of left ventricular ejection fraction and mass quantifications in hypertension and heart failure populations, the p...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278904/ https://www.ncbi.nlm.nih.gov/pubmed/25545637 http://dx.doi.org/10.1371/journal.pone.0115260 |
_version_ | 1782350597902565376 |
---|---|
author | Chang, Sheng-Nan Lai, Yau-Huei Yen, Chih-Hsuan Tsai, Chia-Ti Lin, Jou-Wei Bulwer, Bernard E. Hung, Ta-Chuan Hou, Charles Jia-Yin Kuo, Jen-Yuan Hung, Chung-Lieh Hwang, Juey-Jen Yeh, Hung-I |
author_facet | Chang, Sheng-Nan Lai, Yau-Huei Yen, Chih-Hsuan Tsai, Chia-Ti Lin, Jou-Wei Bulwer, Bernard E. Hung, Ta-Chuan Hou, Charles Jia-Yin Kuo, Jen-Yuan Hung, Chung-Lieh Hwang, Juey-Jen Yeh, Hung-I |
author_sort | Chang, Sheng-Nan |
collection | PubMed |
description | BACKGROUND: Three dimensional (3D) echocardiography-derived measurements of myocardial deformation and twist have recently advanced as novel clinical tools. However, with the exception of left ventricular ejection fraction and mass quantifications in hypertension and heart failure populations, the prognostic value of such imaging techniques remains largely unexplored. METHODS: We studied 200 subjects (mean age: 60.2±16 years, 54% female, female n = 107) with known hypertension (n = 51), diastolic heart failure (n = 61), or systolic heart failure (n = 30), recruited from heart failure outpatient clinics. Fifty-eight healthy volunteers were used as a control group. All participants underwent 3D-based myocardial deformation and twist analysis (Artida, Toshiba Medical Systems, Tokyo, Japan). We further investigated associations between these measures and brain natriuretic peptide levels and clinical outcomes. RESULTS: The global 3D strain measurements of the healthy, hypertension, diastolic heart failure, and systolic heart failure groups were 28.03%, 24.43%, 19.70%, and 11.95%, respectively (all p<0.001). Global twist measurements were estimated to be 9.49°, 9.77°, 8.32°, and 4.56°, respectively. We observed significant differences regarding 3D-derived longitudinal, radial, and global 3D strains between the different disease categories (p<0.05), even when age, gender, BMI and heart rate were matched. In addition, 3D-derived longitudinal, circumferential, and 3D strains were all highly correlated with brain natriuretic peptide levels (p<0.001). At a mean 567.7 days follow-up (25(th)–75(th) IQR: 197–909 days), poorer 3D-derived longitudinal, radial, and global 3D strain measurements remained independently associated with a higher risk of cardiovascular related death or hospitalization due to heart failure, after adjusting for age, gender, and left ventricular ejection fraction (all p<0.05). CONCLUSIONS: 3D-based strain analysis may be a feasible and useful diagnostic tool for discriminating the extent of myocardial dysfunction. Furthermore, it is able to provide a prognostic value beyond traditional echocardiographic parameters in terms of ejection fraction. |
format | Online Article Text |
id | pubmed-4278904 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42789042015-01-05 Cardiac Mechanics and Ventricular Twist by Three-Dimensional Strain Analysis in Relation to B-Type Natriuretic Peptide as a Clinical Prognosticator for Heart Failure Patients Chang, Sheng-Nan Lai, Yau-Huei Yen, Chih-Hsuan Tsai, Chia-Ti Lin, Jou-Wei Bulwer, Bernard E. Hung, Ta-Chuan Hou, Charles Jia-Yin Kuo, Jen-Yuan Hung, Chung-Lieh Hwang, Juey-Jen Yeh, Hung-I PLoS One Research Article BACKGROUND: Three dimensional (3D) echocardiography-derived measurements of myocardial deformation and twist have recently advanced as novel clinical tools. However, with the exception of left ventricular ejection fraction and mass quantifications in hypertension and heart failure populations, the prognostic value of such imaging techniques remains largely unexplored. METHODS: We studied 200 subjects (mean age: 60.2±16 years, 54% female, female n = 107) with known hypertension (n = 51), diastolic heart failure (n = 61), or systolic heart failure (n = 30), recruited from heart failure outpatient clinics. Fifty-eight healthy volunteers were used as a control group. All participants underwent 3D-based myocardial deformation and twist analysis (Artida, Toshiba Medical Systems, Tokyo, Japan). We further investigated associations between these measures and brain natriuretic peptide levels and clinical outcomes. RESULTS: The global 3D strain measurements of the healthy, hypertension, diastolic heart failure, and systolic heart failure groups were 28.03%, 24.43%, 19.70%, and 11.95%, respectively (all p<0.001). Global twist measurements were estimated to be 9.49°, 9.77°, 8.32°, and 4.56°, respectively. We observed significant differences regarding 3D-derived longitudinal, radial, and global 3D strains between the different disease categories (p<0.05), even when age, gender, BMI and heart rate were matched. In addition, 3D-derived longitudinal, circumferential, and 3D strains were all highly correlated with brain natriuretic peptide levels (p<0.001). At a mean 567.7 days follow-up (25(th)–75(th) IQR: 197–909 days), poorer 3D-derived longitudinal, radial, and global 3D strain measurements remained independently associated with a higher risk of cardiovascular related death or hospitalization due to heart failure, after adjusting for age, gender, and left ventricular ejection fraction (all p<0.05). CONCLUSIONS: 3D-based strain analysis may be a feasible and useful diagnostic tool for discriminating the extent of myocardial dysfunction. Furthermore, it is able to provide a prognostic value beyond traditional echocardiographic parameters in terms of ejection fraction. Public Library of Science 2014-12-29 /pmc/articles/PMC4278904/ /pubmed/25545637 http://dx.doi.org/10.1371/journal.pone.0115260 Text en © 2014 Chang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chang, Sheng-Nan Lai, Yau-Huei Yen, Chih-Hsuan Tsai, Chia-Ti Lin, Jou-Wei Bulwer, Bernard E. Hung, Ta-Chuan Hou, Charles Jia-Yin Kuo, Jen-Yuan Hung, Chung-Lieh Hwang, Juey-Jen Yeh, Hung-I Cardiac Mechanics and Ventricular Twist by Three-Dimensional Strain Analysis in Relation to B-Type Natriuretic Peptide as a Clinical Prognosticator for Heart Failure Patients |
title | Cardiac Mechanics and Ventricular Twist by Three-Dimensional Strain Analysis in Relation to B-Type Natriuretic Peptide as a Clinical Prognosticator for Heart Failure Patients |
title_full | Cardiac Mechanics and Ventricular Twist by Three-Dimensional Strain Analysis in Relation to B-Type Natriuretic Peptide as a Clinical Prognosticator for Heart Failure Patients |
title_fullStr | Cardiac Mechanics and Ventricular Twist by Three-Dimensional Strain Analysis in Relation to B-Type Natriuretic Peptide as a Clinical Prognosticator for Heart Failure Patients |
title_full_unstemmed | Cardiac Mechanics and Ventricular Twist by Three-Dimensional Strain Analysis in Relation to B-Type Natriuretic Peptide as a Clinical Prognosticator for Heart Failure Patients |
title_short | Cardiac Mechanics and Ventricular Twist by Three-Dimensional Strain Analysis in Relation to B-Type Natriuretic Peptide as a Clinical Prognosticator for Heart Failure Patients |
title_sort | cardiac mechanics and ventricular twist by three-dimensional strain analysis in relation to b-type natriuretic peptide as a clinical prognosticator for heart failure patients |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278904/ https://www.ncbi.nlm.nih.gov/pubmed/25545637 http://dx.doi.org/10.1371/journal.pone.0115260 |
work_keys_str_mv | AT changshengnan cardiacmechanicsandventriculartwistbythreedimensionalstrainanalysisinrelationtobtypenatriureticpeptideasaclinicalprognosticatorforheartfailurepatients AT laiyauhuei cardiacmechanicsandventriculartwistbythreedimensionalstrainanalysisinrelationtobtypenatriureticpeptideasaclinicalprognosticatorforheartfailurepatients AT yenchihhsuan cardiacmechanicsandventriculartwistbythreedimensionalstrainanalysisinrelationtobtypenatriureticpeptideasaclinicalprognosticatorforheartfailurepatients AT tsaichiati cardiacmechanicsandventriculartwistbythreedimensionalstrainanalysisinrelationtobtypenatriureticpeptideasaclinicalprognosticatorforheartfailurepatients AT linjouwei cardiacmechanicsandventriculartwistbythreedimensionalstrainanalysisinrelationtobtypenatriureticpeptideasaclinicalprognosticatorforheartfailurepatients AT bulwerbernarde cardiacmechanicsandventriculartwistbythreedimensionalstrainanalysisinrelationtobtypenatriureticpeptideasaclinicalprognosticatorforheartfailurepatients AT hungtachuan cardiacmechanicsandventriculartwistbythreedimensionalstrainanalysisinrelationtobtypenatriureticpeptideasaclinicalprognosticatorforheartfailurepatients AT houcharlesjiayin cardiacmechanicsandventriculartwistbythreedimensionalstrainanalysisinrelationtobtypenatriureticpeptideasaclinicalprognosticatorforheartfailurepatients AT kuojenyuan cardiacmechanicsandventriculartwistbythreedimensionalstrainanalysisinrelationtobtypenatriureticpeptideasaclinicalprognosticatorforheartfailurepatients AT hungchunglieh cardiacmechanicsandventriculartwistbythreedimensionalstrainanalysisinrelationtobtypenatriureticpeptideasaclinicalprognosticatorforheartfailurepatients AT hwangjueyjen cardiacmechanicsandventriculartwistbythreedimensionalstrainanalysisinrelationtobtypenatriureticpeptideasaclinicalprognosticatorforheartfailurepatients AT yehhungi cardiacmechanicsandventriculartwistbythreedimensionalstrainanalysisinrelationtobtypenatriureticpeptideasaclinicalprognosticatorforheartfailurepatients |