Cargando…
An Efficient High Throughput Metabotyping Platform for Screening of Biomass Willows
Future improvement of woody biomass crops such as willow and poplar relies on our ability to select for metabolic traits that sequester more atmospheric carbon into biomass, or into useful products to replace petrochemical streams. We describe the development of metabotyping screens for willow, usin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279154/ https://www.ncbi.nlm.nih.gov/pubmed/25353313 http://dx.doi.org/10.3390/metabo4040946 |
_version_ | 1782350633823633408 |
---|---|
author | Corol, Delia I. Harflett, Claudia Beale, Michael H. Ward, Jane L. |
author_facet | Corol, Delia I. Harflett, Claudia Beale, Michael H. Ward, Jane L. |
author_sort | Corol, Delia I. |
collection | PubMed |
description | Future improvement of woody biomass crops such as willow and poplar relies on our ability to select for metabolic traits that sequester more atmospheric carbon into biomass, or into useful products to replace petrochemical streams. We describe the development of metabotyping screens for willow, using combined 1D (1)H-NMR-MS. A protocol was developed to overcome 1D (1)H-NMR spectral alignment problems caused by variable pH and peak broadening arising from high organic acid levels and metal cations. The outcome was a robust method to allow direct statistical comparison of profiles arising from source (leaf) and sink (stem) tissues allowing data to be normalised to a constant weight of the soluble metabolome. We also describe the analysis of two willow biomass varieties, demonstrating how fingerprints from 1D (1)H-NMR-MS vary from the top to the bottom of the plant. Automated extraction of quantitative data of 56 primary and secondary metabolites from 1D (1)H-NMR spectra was realised by the construction and application of a Salix metabolite spectral library using the Chenomx software suite. The optimised metabotyping screen in conjunction with automated quantitation will enable high-throughput screening of genetic collections. It also provides genotype and tissue specific data for future modelling of carbon flow in metabolic networks. |
format | Online Article Text |
id | pubmed-4279154 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-42791542014-12-30 An Efficient High Throughput Metabotyping Platform for Screening of Biomass Willows Corol, Delia I. Harflett, Claudia Beale, Michael H. Ward, Jane L. Metabolites Article Future improvement of woody biomass crops such as willow and poplar relies on our ability to select for metabolic traits that sequester more atmospheric carbon into biomass, or into useful products to replace petrochemical streams. We describe the development of metabotyping screens for willow, using combined 1D (1)H-NMR-MS. A protocol was developed to overcome 1D (1)H-NMR spectral alignment problems caused by variable pH and peak broadening arising from high organic acid levels and metal cations. The outcome was a robust method to allow direct statistical comparison of profiles arising from source (leaf) and sink (stem) tissues allowing data to be normalised to a constant weight of the soluble metabolome. We also describe the analysis of two willow biomass varieties, demonstrating how fingerprints from 1D (1)H-NMR-MS vary from the top to the bottom of the plant. Automated extraction of quantitative data of 56 primary and secondary metabolites from 1D (1)H-NMR spectra was realised by the construction and application of a Salix metabolite spectral library using the Chenomx software suite. The optimised metabotyping screen in conjunction with automated quantitation will enable high-throughput screening of genetic collections. It also provides genotype and tissue specific data for future modelling of carbon flow in metabolic networks. MDPI 2014-10-28 /pmc/articles/PMC4279154/ /pubmed/25353313 http://dx.doi.org/10.3390/metabo4040946 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Corol, Delia I. Harflett, Claudia Beale, Michael H. Ward, Jane L. An Efficient High Throughput Metabotyping Platform for Screening of Biomass Willows |
title | An Efficient High Throughput Metabotyping Platform for Screening of Biomass Willows |
title_full | An Efficient High Throughput Metabotyping Platform for Screening of Biomass Willows |
title_fullStr | An Efficient High Throughput Metabotyping Platform for Screening of Biomass Willows |
title_full_unstemmed | An Efficient High Throughput Metabotyping Platform for Screening of Biomass Willows |
title_short | An Efficient High Throughput Metabotyping Platform for Screening of Biomass Willows |
title_sort | efficient high throughput metabotyping platform for screening of biomass willows |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279154/ https://www.ncbi.nlm.nih.gov/pubmed/25353313 http://dx.doi.org/10.3390/metabo4040946 |
work_keys_str_mv | AT coroldeliai anefficienthighthroughputmetabotypingplatformforscreeningofbiomasswillows AT harflettclaudia anefficienthighthroughputmetabotypingplatformforscreeningofbiomasswillows AT bealemichaelh anefficienthighthroughputmetabotypingplatformforscreeningofbiomasswillows AT wardjanel anefficienthighthroughputmetabotypingplatformforscreeningofbiomasswillows AT coroldeliai efficienthighthroughputmetabotypingplatformforscreeningofbiomasswillows AT harflettclaudia efficienthighthroughputmetabotypingplatformforscreeningofbiomasswillows AT bealemichaelh efficienthighthroughputmetabotypingplatformforscreeningofbiomasswillows AT wardjanel efficienthighthroughputmetabotypingplatformforscreeningofbiomasswillows |