Cargando…

Poly(ADP-ribosyl)ation is involved in the epigenetic control of TET1 gene transcription

TET enzymes are the epigenetic factors involved in the formation of the sixth DNA base 5-hydroxymethylcytosine, whose deregulation has been associated with tumorigenesis. In particular, TET1 acts as tumor suppressor preventing cell proliferation and tumor metastasis and it has frequently been found...

Descripción completa

Detalles Bibliográficos
Autores principales: Ciccarone, Fabio, Valentini, Elisabetta, Bacalini, Maria Giulia, Zampieri, Michele, Calabrese, Roberta, Guastafierro, Tiziana, Mariano, Germano, Reale, Anna, Franceschi, Claudio, Caiafa, Paola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279378/
https://www.ncbi.nlm.nih.gov/pubmed/24939750
Descripción
Sumario:TET enzymes are the epigenetic factors involved in the formation of the sixth DNA base 5-hydroxymethylcytosine, whose deregulation has been associated with tumorigenesis. In particular, TET1 acts as tumor suppressor preventing cell proliferation and tumor metastasis and it has frequently been found down-regulated in cancer. Thus, considering the importance of a tight control of TET1 expression, the epigenetic mechanisms involved in the transcriptional regulation of TET1 gene are here investigated. The involvement of poly(ADP-ribosyl)ation in the control of DNA and histone methylation on TET1 gene was examined. PARP activity is able to positively regulate TET1 expressionmaintaining a permissive chromatin state characterized by DNA hypomethylation of TET1 CpG island as well as high levels of H3K4 trimethylation. These epigenetic modifications were affected by PAR depletion causing TET1 down-regulation and in turn reduced recruitment of TET1 protein on HOXA9 target gene. In conclusion, this work shows that PARP activity is a transcriptional regulator of TET1 gene through the control of epigenetic events and it suggests that deregulation of these mechanisms could account for TET1 repression in cancer.