Cargando…
Automatic Classification of the Sub-Techniques (Gears) Used in Cross-Country Ski Skating Employing a Mobile Phone
The purpose of the current study was to develop and validate an automatic algorithm for classification of cross-country (XC) ski-skating gears (G) using Smartphone accelerometer data. Eleven XC skiers (seven men, four women) with regional-to-international levels of performance carried out roller ski...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279501/ https://www.ncbi.nlm.nih.gov/pubmed/25365459 http://dx.doi.org/10.3390/s141120589 |
_version_ | 1782350702039793664 |
---|---|
author | Stöggl, Thomas Holst, Anders Jonasson, Arndt Andersson, Erik Wunsch, Tobias Norström, Christer Holmberg, Hans-Christer |
author_facet | Stöggl, Thomas Holst, Anders Jonasson, Arndt Andersson, Erik Wunsch, Tobias Norström, Christer Holmberg, Hans-Christer |
author_sort | Stöggl, Thomas |
collection | PubMed |
description | The purpose of the current study was to develop and validate an automatic algorithm for classification of cross-country (XC) ski-skating gears (G) using Smartphone accelerometer data. Eleven XC skiers (seven men, four women) with regional-to-international levels of performance carried out roller skiing trials on a treadmill using fixed gears (G2left, G2right, G3, G4left, G4right) and a 950-m trial using different speeds and inclines, applying gears and sides as they normally would. Gear classification by the Smartphone (on the chest) and based on video recordings were compared. Formachine-learning, a collective database was compared to individual data. The Smartphone application identified the trials with fixed gears correctly in all cases. In the 950-m trial, participants executed 140 ± 22 cycles as assessed by video analysis, with the automatic Smartphone application giving a similar value. Based on collective data, gears were identified correctly 86.0% ± 8.9% of the time, a value that rose to 90.3% ± 4.1% (P < 0.01) with machine learning from individual data. Classification was most often incorrect during transition between gears, especially to or from G3. Identification was most often correct for skiers who made relatively few transitions between gears. The accuracy of the automatic procedure for identifying G2left, G2right, G3, G4left and G4right was 96%, 90%, 81%, 88% and 94%, respectively. The algorithm identified gears correctly 100% of the time when a single gear was used and 90% of the time when different gears were employed during a variable protocol. This algorithm could be improved with respect to identification of transitions between gears or the side employed within a given gear. |
format | Online Article Text |
id | pubmed-4279501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-42795012015-01-15 Automatic Classification of the Sub-Techniques (Gears) Used in Cross-Country Ski Skating Employing a Mobile Phone Stöggl, Thomas Holst, Anders Jonasson, Arndt Andersson, Erik Wunsch, Tobias Norström, Christer Holmberg, Hans-Christer Sensors (Basel) Article The purpose of the current study was to develop and validate an automatic algorithm for classification of cross-country (XC) ski-skating gears (G) using Smartphone accelerometer data. Eleven XC skiers (seven men, four women) with regional-to-international levels of performance carried out roller skiing trials on a treadmill using fixed gears (G2left, G2right, G3, G4left, G4right) and a 950-m trial using different speeds and inclines, applying gears and sides as they normally would. Gear classification by the Smartphone (on the chest) and based on video recordings were compared. Formachine-learning, a collective database was compared to individual data. The Smartphone application identified the trials with fixed gears correctly in all cases. In the 950-m trial, participants executed 140 ± 22 cycles as assessed by video analysis, with the automatic Smartphone application giving a similar value. Based on collective data, gears were identified correctly 86.0% ± 8.9% of the time, a value that rose to 90.3% ± 4.1% (P < 0.01) with machine learning from individual data. Classification was most often incorrect during transition between gears, especially to or from G3. Identification was most often correct for skiers who made relatively few transitions between gears. The accuracy of the automatic procedure for identifying G2left, G2right, G3, G4left and G4right was 96%, 90%, 81%, 88% and 94%, respectively. The algorithm identified gears correctly 100% of the time when a single gear was used and 90% of the time when different gears were employed during a variable protocol. This algorithm could be improved with respect to identification of transitions between gears or the side employed within a given gear. MDPI 2014-10-31 /pmc/articles/PMC4279501/ /pubmed/25365459 http://dx.doi.org/10.3390/s141120589 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Stöggl, Thomas Holst, Anders Jonasson, Arndt Andersson, Erik Wunsch, Tobias Norström, Christer Holmberg, Hans-Christer Automatic Classification of the Sub-Techniques (Gears) Used in Cross-Country Ski Skating Employing a Mobile Phone |
title | Automatic Classification of the Sub-Techniques (Gears) Used in Cross-Country Ski Skating Employing a Mobile Phone |
title_full | Automatic Classification of the Sub-Techniques (Gears) Used in Cross-Country Ski Skating Employing a Mobile Phone |
title_fullStr | Automatic Classification of the Sub-Techniques (Gears) Used in Cross-Country Ski Skating Employing a Mobile Phone |
title_full_unstemmed | Automatic Classification of the Sub-Techniques (Gears) Used in Cross-Country Ski Skating Employing a Mobile Phone |
title_short | Automatic Classification of the Sub-Techniques (Gears) Used in Cross-Country Ski Skating Employing a Mobile Phone |
title_sort | automatic classification of the sub-techniques (gears) used in cross-country ski skating employing a mobile phone |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279501/ https://www.ncbi.nlm.nih.gov/pubmed/25365459 http://dx.doi.org/10.3390/s141120589 |
work_keys_str_mv | AT stogglthomas automaticclassificationofthesubtechniquesgearsusedincrosscountryskiskatingemployingamobilephone AT holstanders automaticclassificationofthesubtechniquesgearsusedincrosscountryskiskatingemployingamobilephone AT jonassonarndt automaticclassificationofthesubtechniquesgearsusedincrosscountryskiskatingemployingamobilephone AT anderssonerik automaticclassificationofthesubtechniquesgearsusedincrosscountryskiskatingemployingamobilephone AT wunschtobias automaticclassificationofthesubtechniquesgearsusedincrosscountryskiskatingemployingamobilephone AT norstromchrister automaticclassificationofthesubtechniquesgearsusedincrosscountryskiskatingemployingamobilephone AT holmberghanschrister automaticclassificationofthesubtechniquesgearsusedincrosscountryskiskatingemployingamobilephone |