Cargando…

A Target Model Construction Algorithm for Robust Real-Time Mean-Shift Tracking

Mean-shift tracking has gained more interests, nowadays, aided by its feasibility of real-time and reliable tracker implementation. In order to reduce background clutter interference to mean-shift object tracking, this paper proposes a novel indicator function generation method. The proposed method...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Yoo-Joo, Kim, Yong-Goo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279509/
https://www.ncbi.nlm.nih.gov/pubmed/25372619
http://dx.doi.org/10.3390/s141120736
Descripción
Sumario:Mean-shift tracking has gained more interests, nowadays, aided by its feasibility of real-time and reliable tracker implementation. In order to reduce background clutter interference to mean-shift object tracking, this paper proposes a novel indicator function generation method. The proposed method takes advantage of two ‘a priori’ knowledge elements, which are inherent to a kernel support for initializing a target model. Based on the assured background labels, a gradient-based label propagation is performed, resulting in a number of objects differentiated from the background. Then the proposed region growing scheme picks up one largest target object near the center of the kernel support. The grown object region constitutes the proposed indicator function and this allows an exact target model construction for robust mean-shift tracking. Simulation results demonstrate the proposed exact target model could significantly enhance the robustness as well as the accuracy of mean-shift object tracking.