Cargando…
Sampling-Based Real-Time Motion Planning under State Uncertainty for Autonomous Micro-Aerial Vehicles in GPS-Denied Environments
This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic...
Autores principales: | Li, Dachuan, Li, Qing, Cheng, Nong, Song, Jingyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279562/ https://www.ncbi.nlm.nih.gov/pubmed/25412217 http://dx.doi.org/10.3390/s141121791 |
Ejemplares similares
-
Optimal Motion Planning in GPS-Denied Environments Using Nonlinear Model Predictive Horizon
por: Younes, Younes Al, et al.
Publicado: (2021) -
A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments
por: López, Elena, et al.
Publicado: (2017) -
Enabling UAV Navigation with Sensor and Environmental Uncertainty in Cluttered and GPS-Denied Environments
por: Vanegas, Fernando, et al.
Publicado: (2016) -
Autonomous Navigation for Drone Swarms in GPS-Denied Environments Using Structured Learning
por: Power, William, et al.
Publicado: (2020) -
Visual Odometry Using Pixel Processor Arrays for Unmanned Aerial Systems in GPS Denied Environments
por: McConville, Alexander, et al.
Publicado: (2020)