Cargando…

Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations

Engineered nanoparticles (NPs) are widely used in many sectors, such as food, medicine, military, and sport, but their unique characteristics may cause deleterious health effects. Close attention is being paid to metal NP genotoxicity; however, NP genotoxic/carcinogenic effects and the underlying me...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwon, Jee Young, Koedrith, Preeyaporn, Seo, Young Rok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279763/
https://www.ncbi.nlm.nih.gov/pubmed/25565845
http://dx.doi.org/10.2147/IJN.S57918
_version_ 1782350755111370752
author Kwon, Jee Young
Koedrith, Preeyaporn
Seo, Young Rok
author_facet Kwon, Jee Young
Koedrith, Preeyaporn
Seo, Young Rok
author_sort Kwon, Jee Young
collection PubMed
description Engineered nanoparticles (NPs) are widely used in many sectors, such as food, medicine, military, and sport, but their unique characteristics may cause deleterious health effects. Close attention is being paid to metal NP genotoxicity; however, NP genotoxic/carcinogenic effects and the underlying mechanisms remain to be elucidated. In this review, we address some metal and metal oxide NPs of interest and current genotoxicity tests in vitro and in vivo. Metal NPs can cause DNA damage such as chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. We also discuss several parameters that may affect genotoxic response, including physicochemical properties, widely used assays/end point tests, and experimental conditions. Although potential biomarkers of nanogenotoxicity or carcinogenicity are suggested, inconsistent findings in the literature render results inconclusive due to a variety of factors. Advantages and limitations related to different methods for investigating genotoxicity are described, and future directions and recommendations for better understanding genotoxic potential are addressed.
format Online
Article
Text
id pubmed-4279763
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Dove Medical Press
record_format MEDLINE/PubMed
spelling pubmed-42797632015-01-06 Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations Kwon, Jee Young Koedrith, Preeyaporn Seo, Young Rok Int J Nanomedicine Review Engineered nanoparticles (NPs) are widely used in many sectors, such as food, medicine, military, and sport, but their unique characteristics may cause deleterious health effects. Close attention is being paid to metal NP genotoxicity; however, NP genotoxic/carcinogenic effects and the underlying mechanisms remain to be elucidated. In this review, we address some metal and metal oxide NPs of interest and current genotoxicity tests in vitro and in vivo. Metal NPs can cause DNA damage such as chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. We also discuss several parameters that may affect genotoxic response, including physicochemical properties, widely used assays/end point tests, and experimental conditions. Although potential biomarkers of nanogenotoxicity or carcinogenicity are suggested, inconsistent findings in the literature render results inconclusive due to a variety of factors. Advantages and limitations related to different methods for investigating genotoxicity are described, and future directions and recommendations for better understanding genotoxic potential are addressed. Dove Medical Press 2014-12-15 /pmc/articles/PMC4279763/ /pubmed/25565845 http://dx.doi.org/10.2147/IJN.S57918 Text en © 2014 Kwon et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.
spellingShingle Review
Kwon, Jee Young
Koedrith, Preeyaporn
Seo, Young Rok
Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations
title Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations
title_full Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations
title_fullStr Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations
title_full_unstemmed Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations
title_short Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations
title_sort current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279763/
https://www.ncbi.nlm.nih.gov/pubmed/25565845
http://dx.doi.org/10.2147/IJN.S57918
work_keys_str_mv AT kwonjeeyoung currentinvestigationsintothegenotoxicityofzincoxideandsilicananoparticlesinmammalianmodelsinvitroandinvivocarcinogenicgenotoxicpotentialrelevantmechanismsandbiomarkersartifactsandlimitations
AT koedrithpreeyaporn currentinvestigationsintothegenotoxicityofzincoxideandsilicananoparticlesinmammalianmodelsinvitroandinvivocarcinogenicgenotoxicpotentialrelevantmechanismsandbiomarkersartifactsandlimitations
AT seoyoungrok currentinvestigationsintothegenotoxicityofzincoxideandsilicananoparticlesinmammalianmodelsinvitroandinvivocarcinogenicgenotoxicpotentialrelevantmechanismsandbiomarkersartifactsandlimitations