Cargando…
Role of High Mobility Group Box 1 (HMGB1) in SCA17 Pathogenesis
Spinocerebellar ataxia type 17 (SCA17) involves the expression of a polyglutamine (polyQ) expanded TATA-binding protein (TBP), a general transcription initiation factor. TBP interacts with other protein factors, including high mobility group box 1 (HMGB1), to regulate gene expression. Previously, ou...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280131/ https://www.ncbi.nlm.nih.gov/pubmed/25549101 http://dx.doi.org/10.1371/journal.pone.0115809 |
Sumario: | Spinocerebellar ataxia type 17 (SCA17) involves the expression of a polyglutamine (polyQ) expanded TATA-binding protein (TBP), a general transcription initiation factor. TBP interacts with other protein factors, including high mobility group box 1 (HMGB1), to regulate gene expression. Previously, our proteomic analysis of soluble proteins prepared from mutant TBP (TBP/Q(61)) expressing cells revealed a reduced concentration of HMGB1. Here, we show that HMGB1 can be incorporated into mutant TBP aggregates, which leads to reduced soluble HMGB1 levels in TBP/Q(61∼79) expressing cells. HMGB1 overexpression reduced mutant TBP aggregation. HMGB1 cDNA and siRNA co-transfection, as well as an HSPA5 immunoblot and luciferase reporter assay demonstrated the important role of HMGB1 in the regulation of HSPA5 transcription. In starvation-stressed TBP/Q(36) and TBP/Q(79) cells, increased reactive oxygen species generation accelerated the cytoplasmic translocation of HMGB1, which accompanied autophagy activation. However, TBP/Q(79) cells displayed a decrease in autophagy activation as a result of the reduction in the cytoplasmic HMGB1 level. In neuronal SH-SY5Y cells with induced TBP/Q(61∼79) expression, HMGB1 expression was reduced and accompanied by a significant reduction in the total outgrowth and branches in the TBP/Q(61∼79) expressing cells compared with the non-induced cells. The decreased soluble HMGB1 and impaired starvation-induced autophagy in cells suggest that HMGB1 may be a critical modulator of polyQ disease pathology and may represent a target for drug development. |
---|