Cargando…

Kinomic Profiling of Electromagnetic Navigational Bronchoscopy Specimens: A New Approach for Personalized Medicine

PURPOSE: Researchers are currently seeking relevant lung cancer biomarkers in order to make informed decisions regarding therapeutic selection for patients in so-called “precision medicine.” However, there are challenges to obtaining adequate lung cancer tissue for molecular analyses. Furthermore, c...

Descripción completa

Detalles Bibliográficos
Autores principales: Anderson, Joshua C., Minnich, Douglas J., Dobelbower, M. Christian, Denton, Alexander J., Dussaq, Alex M., Gilbert, Ashley N., Rohrbach, Timothy D., Arafat, Waleed, Welaya, Karim, Bonner, James A., Willey, Christopher D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280210/
https://www.ncbi.nlm.nih.gov/pubmed/25549342
http://dx.doi.org/10.1371/journal.pone.0116388
_version_ 1782350825857744896
author Anderson, Joshua C.
Minnich, Douglas J.
Dobelbower, M. Christian
Denton, Alexander J.
Dussaq, Alex M.
Gilbert, Ashley N.
Rohrbach, Timothy D.
Arafat, Waleed
Welaya, Karim
Bonner, James A.
Willey, Christopher D.
author_facet Anderson, Joshua C.
Minnich, Douglas J.
Dobelbower, M. Christian
Denton, Alexander J.
Dussaq, Alex M.
Gilbert, Ashley N.
Rohrbach, Timothy D.
Arafat, Waleed
Welaya, Karim
Bonner, James A.
Willey, Christopher D.
author_sort Anderson, Joshua C.
collection PubMed
description PURPOSE: Researchers are currently seeking relevant lung cancer biomarkers in order to make informed decisions regarding therapeutic selection for patients in so-called “precision medicine.” However, there are challenges to obtaining adequate lung cancer tissue for molecular analyses. Furthermore, current molecular testing of tumors at the genomic or transcriptomic level are very indirect measures of biological response to a drug, particularly for small molecule inhibitors that target kinases. Kinase activity profiling is therefore theorized to be more reflective of in vivo biology than many current molecular analysis techniques. As a result, this study seeks to prove the feasibility of combining a novel minimally invasive biopsy technique that expands the number of lesions amenable for biopsy with subsequent ex vivo kinase activity analysis. METHODS: Eight patients with lung lesions of varying location and size were biopsied using the novel electromagnetic navigational bronchoscopy (ENB) technique. Basal kinase activity (kinomic) profiles and ex vivo interrogation of samples in combination with tyrosine kinase inhibitors erlotinib, crizotinib, and lapatinib were performed by PamStation 12 microarray analysis. RESULTS: Kinomic profiling qualitatively identified patient specific kinase activity profiles as well as patient and drug specific changes in kinase activity profiles following exposure to inhibitor. Thus, the study has verified the feasibility of ENB as a method for obtaining tissue in adequate quantities for kinomic analysis and has demonstrated the possible use of this tissue acquisition and analysis technique as a method for future study of lung cancer biomarkers. CONCLUSIONS: We demonstrate the feasibility of using ENB-derived biopsies to perform kinase activity assessment in lung cancer patients.
format Online
Article
Text
id pubmed-4280210
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-42802102015-01-07 Kinomic Profiling of Electromagnetic Navigational Bronchoscopy Specimens: A New Approach for Personalized Medicine Anderson, Joshua C. Minnich, Douglas J. Dobelbower, M. Christian Denton, Alexander J. Dussaq, Alex M. Gilbert, Ashley N. Rohrbach, Timothy D. Arafat, Waleed Welaya, Karim Bonner, James A. Willey, Christopher D. PLoS One Research Article PURPOSE: Researchers are currently seeking relevant lung cancer biomarkers in order to make informed decisions regarding therapeutic selection for patients in so-called “precision medicine.” However, there are challenges to obtaining adequate lung cancer tissue for molecular analyses. Furthermore, current molecular testing of tumors at the genomic or transcriptomic level are very indirect measures of biological response to a drug, particularly for small molecule inhibitors that target kinases. Kinase activity profiling is therefore theorized to be more reflective of in vivo biology than many current molecular analysis techniques. As a result, this study seeks to prove the feasibility of combining a novel minimally invasive biopsy technique that expands the number of lesions amenable for biopsy with subsequent ex vivo kinase activity analysis. METHODS: Eight patients with lung lesions of varying location and size were biopsied using the novel electromagnetic navigational bronchoscopy (ENB) technique. Basal kinase activity (kinomic) profiles and ex vivo interrogation of samples in combination with tyrosine kinase inhibitors erlotinib, crizotinib, and lapatinib were performed by PamStation 12 microarray analysis. RESULTS: Kinomic profiling qualitatively identified patient specific kinase activity profiles as well as patient and drug specific changes in kinase activity profiles following exposure to inhibitor. Thus, the study has verified the feasibility of ENB as a method for obtaining tissue in adequate quantities for kinomic analysis and has demonstrated the possible use of this tissue acquisition and analysis technique as a method for future study of lung cancer biomarkers. CONCLUSIONS: We demonstrate the feasibility of using ENB-derived biopsies to perform kinase activity assessment in lung cancer patients. Public Library of Science 2014-12-30 /pmc/articles/PMC4280210/ /pubmed/25549342 http://dx.doi.org/10.1371/journal.pone.0116388 Text en © 2014 Anderson et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Anderson, Joshua C.
Minnich, Douglas J.
Dobelbower, M. Christian
Denton, Alexander J.
Dussaq, Alex M.
Gilbert, Ashley N.
Rohrbach, Timothy D.
Arafat, Waleed
Welaya, Karim
Bonner, James A.
Willey, Christopher D.
Kinomic Profiling of Electromagnetic Navigational Bronchoscopy Specimens: A New Approach for Personalized Medicine
title Kinomic Profiling of Electromagnetic Navigational Bronchoscopy Specimens: A New Approach for Personalized Medicine
title_full Kinomic Profiling of Electromagnetic Navigational Bronchoscopy Specimens: A New Approach for Personalized Medicine
title_fullStr Kinomic Profiling of Electromagnetic Navigational Bronchoscopy Specimens: A New Approach for Personalized Medicine
title_full_unstemmed Kinomic Profiling of Electromagnetic Navigational Bronchoscopy Specimens: A New Approach for Personalized Medicine
title_short Kinomic Profiling of Electromagnetic Navigational Bronchoscopy Specimens: A New Approach for Personalized Medicine
title_sort kinomic profiling of electromagnetic navigational bronchoscopy specimens: a new approach for personalized medicine
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280210/
https://www.ncbi.nlm.nih.gov/pubmed/25549342
http://dx.doi.org/10.1371/journal.pone.0116388
work_keys_str_mv AT andersonjoshuac kinomicprofilingofelectromagneticnavigationalbronchoscopyspecimensanewapproachforpersonalizedmedicine
AT minnichdouglasj kinomicprofilingofelectromagneticnavigationalbronchoscopyspecimensanewapproachforpersonalizedmedicine
AT dobelbowermchristian kinomicprofilingofelectromagneticnavigationalbronchoscopyspecimensanewapproachforpersonalizedmedicine
AT dentonalexanderj kinomicprofilingofelectromagneticnavigationalbronchoscopyspecimensanewapproachforpersonalizedmedicine
AT dussaqalexm kinomicprofilingofelectromagneticnavigationalbronchoscopyspecimensanewapproachforpersonalizedmedicine
AT gilbertashleyn kinomicprofilingofelectromagneticnavigationalbronchoscopyspecimensanewapproachforpersonalizedmedicine
AT rohrbachtimothyd kinomicprofilingofelectromagneticnavigationalbronchoscopyspecimensanewapproachforpersonalizedmedicine
AT arafatwaleed kinomicprofilingofelectromagneticnavigationalbronchoscopyspecimensanewapproachforpersonalizedmedicine
AT welayakarim kinomicprofilingofelectromagneticnavigationalbronchoscopyspecimensanewapproachforpersonalizedmedicine
AT bonnerjamesa kinomicprofilingofelectromagneticnavigationalbronchoscopyspecimensanewapproachforpersonalizedmedicine
AT willeychristopherd kinomicprofilingofelectromagneticnavigationalbronchoscopyspecimensanewapproachforpersonalizedmedicine