Cargando…

Effect of extractions from Ephedra sinica Stapf on hyperlipidemia in mice

The aim of the present study was to investigate the hypolipidemic and antioxidant potential of ephedra extractions in diet-induced hyperlipidemic mice. Mice were fed a diet high in fat to establish the hyperlipidemic model. A total of 48 mice were randomly divided into six groups, which included the...

Descripción completa

Detalles Bibliográficos
Autores principales: FAN, YANBO, LI, JINGJING, YIN, QIANG, ZHANG, YISHENG, XU, HUIFANG, SHI, XINHUA, LI, CHEN, ZHOU, YAN, ZHOU, CAIXIN
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280985/
https://www.ncbi.nlm.nih.gov/pubmed/25574244
http://dx.doi.org/10.3892/etm.2014.2117
Descripción
Sumario:The aim of the present study was to investigate the hypolipidemic and antioxidant potential of ephedra extractions in diet-induced hyperlipidemic mice. Mice were fed a diet high in fat to establish the hyperlipidemic model. A total of 48 mice were randomly divided into six groups, which included the normal control, model control, positive control, ephedra alkaloid, ephedra polysaccharide and ephedra non-alkaloid groups. Intragastric administration of the respective treatments was provided continuously for four weeks and the body weight was recorded weekly. The total levels of cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C) and malondialdehyde (MDA), and the activity levels of superoxide dismutase (SOD), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum were recorded. In addition, changes in liver morphology and organ coefficients (ratio of organ to body weight) were evaluated, while the acute toxicity reactions of ephedra extractions were investigated using the modified Spearman-Karber method. Compared with the mice in the model control group, the weight, liver coefficient, serum levels of TC, TG and MDA, and activities of ALT and AST were significantly lower (P<0.05) in the mice in the ephedra non-alkaloid group. However, the level of HDL-C and the activity of SOD were markedly higher (P<0.05). Fatty degeneration of the liver in the ephedra alkaloid and non-alkaloid groups was notably improved compared with the model control group. The mean lethal dose (LD(50)) of ephedra alkaloids was 610 mg/kg, and the maximum tolerated dose of oral ephedra non-alkaloids in the mice was 367.5-fold larger than the clinical dosage in humans. In conclusion, ephedra non-alkaloids have therapeutic potential for the treatment of hyperlipidemia, since they are able to improve lipid metabolism and are relatively safe for use under the maximum tolerated dose.