Cargando…
Ranging in Human Sonar: Effects of Additional Early Reflections and Exploratory Head Movements
Many blind people rely on echoes from self-produced sounds to assess their environment. It has been shown that human subjects can use echolocation for directional localization and orientation in a room, but echo-acoustic distance perception - e.g. to determine one's position in a room - has rec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281102/ https://www.ncbi.nlm.nih.gov/pubmed/25551226 http://dx.doi.org/10.1371/journal.pone.0115363 |
_version_ | 1782350938462224384 |
---|---|
author | Wallmeier, Ludwig Wiegrebe, Lutz |
author_facet | Wallmeier, Ludwig Wiegrebe, Lutz |
author_sort | Wallmeier, Ludwig |
collection | PubMed |
description | Many blind people rely on echoes from self-produced sounds to assess their environment. It has been shown that human subjects can use echolocation for directional localization and orientation in a room, but echo-acoustic distance perception - e.g. to determine one's position in a room - has received little scientific attention, and systematic studies on the influence of additional early reflections and exploratory head movements are lacking. This study investigates echo-acoustic distance discrimination in virtual echo-acoustic space, using the impulse responses of a real corridor. Six blindfolded sighted subjects and a blind echolocation expert had to discriminate between two positions in the virtual corridor, which differed by their distance to the front wall, but not to the lateral walls. To solve this task, participants evaluated echoes that were generated in real time from self-produced vocalizations. Across experimental conditions, we systematically varied the restrictions for head rotations, the subjects' orientation in virtual space and the reference position. Three key results were observed. First, all participants successfully solved the task with discrimination thresholds below 1 m for all reference distances (0.75–4 m). Performance was best for the smallest reference distance of 0.75 m, with thresholds around 20 cm. Second, distance discrimination performance was relatively robust against additional early reflections, compared to other echolocation tasks like directional localization. Third, free head rotations during echolocation can improve distance discrimination performance in complex environmental settings. However, head movements do not necessarily provide a benefit over static echolocation from an optimal single orientation. These results show that accurate distance discrimination through echolocation is possible over a wide range of reference distances and environmental conditions. This is an important functional benefit of human echolocation, which may also play a major role in the calibration of auditory space representations. |
format | Online Article Text |
id | pubmed-4281102 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42811022015-01-07 Ranging in Human Sonar: Effects of Additional Early Reflections and Exploratory Head Movements Wallmeier, Ludwig Wiegrebe, Lutz PLoS One Research Article Many blind people rely on echoes from self-produced sounds to assess their environment. It has been shown that human subjects can use echolocation for directional localization and orientation in a room, but echo-acoustic distance perception - e.g. to determine one's position in a room - has received little scientific attention, and systematic studies on the influence of additional early reflections and exploratory head movements are lacking. This study investigates echo-acoustic distance discrimination in virtual echo-acoustic space, using the impulse responses of a real corridor. Six blindfolded sighted subjects and a blind echolocation expert had to discriminate between two positions in the virtual corridor, which differed by their distance to the front wall, but not to the lateral walls. To solve this task, participants evaluated echoes that were generated in real time from self-produced vocalizations. Across experimental conditions, we systematically varied the restrictions for head rotations, the subjects' orientation in virtual space and the reference position. Three key results were observed. First, all participants successfully solved the task with discrimination thresholds below 1 m for all reference distances (0.75–4 m). Performance was best for the smallest reference distance of 0.75 m, with thresholds around 20 cm. Second, distance discrimination performance was relatively robust against additional early reflections, compared to other echolocation tasks like directional localization. Third, free head rotations during echolocation can improve distance discrimination performance in complex environmental settings. However, head movements do not necessarily provide a benefit over static echolocation from an optimal single orientation. These results show that accurate distance discrimination through echolocation is possible over a wide range of reference distances and environmental conditions. This is an important functional benefit of human echolocation, which may also play a major role in the calibration of auditory space representations. Public Library of Science 2014-12-31 /pmc/articles/PMC4281102/ /pubmed/25551226 http://dx.doi.org/10.1371/journal.pone.0115363 Text en © 2014 Wallmeier, Wiegrebe http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wallmeier, Ludwig Wiegrebe, Lutz Ranging in Human Sonar: Effects of Additional Early Reflections and Exploratory Head Movements |
title | Ranging in Human Sonar: Effects of Additional Early Reflections and Exploratory Head Movements |
title_full | Ranging in Human Sonar: Effects of Additional Early Reflections and Exploratory Head Movements |
title_fullStr | Ranging in Human Sonar: Effects of Additional Early Reflections and Exploratory Head Movements |
title_full_unstemmed | Ranging in Human Sonar: Effects of Additional Early Reflections and Exploratory Head Movements |
title_short | Ranging in Human Sonar: Effects of Additional Early Reflections and Exploratory Head Movements |
title_sort | ranging in human sonar: effects of additional early reflections and exploratory head movements |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281102/ https://www.ncbi.nlm.nih.gov/pubmed/25551226 http://dx.doi.org/10.1371/journal.pone.0115363 |
work_keys_str_mv | AT wallmeierludwig ranginginhumansonareffectsofadditionalearlyreflectionsandexploratoryheadmovements AT wiegrebelutz ranginginhumansonareffectsofadditionalearlyreflectionsandexploratoryheadmovements |