Cargando…

Mechanosensory molecules and circuits in C. elegans

Mechanosensory neurons, whose activity is controlled by mechanical force, underlie the senses of touch, hearing, and proprioception, yet despite their importance, the molecular basis of mechanotransduction is poorly understood. Genetic studies in Caenorhabditis elegans have provided a useful approac...

Descripción completa

Detalles Bibliográficos
Autor principal: Schafer, William R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281349/
https://www.ncbi.nlm.nih.gov/pubmed/25053538
http://dx.doi.org/10.1007/s00424-014-1574-3
Descripción
Sumario:Mechanosensory neurons, whose activity is controlled by mechanical force, underlie the senses of touch, hearing, and proprioception, yet despite their importance, the molecular basis of mechanotransduction is poorly understood. Genetic studies in Caenorhabditis elegans have provided a useful approach for identifying potential components of mechanotransduction complexes that might be conserved in more complex organisms. This review describes the mechanosensory systems of C. elegans, including the sensory neurons and circuitry involved in body touch, nose touch, and proprioception. In addition, the roles of genes encoding known and potential mechanosensory receptors, including members of the broadly conserved transient receptor potential (TRP) and degerin/epithelial Na(+) channel (DEG/ENaC) channel families, are discussed.