Cargando…
Thermodynamics Study of Solvent Adsorption on Octadecyl-Modified Silica
Elution and solvation processes in liquid chromatography may be controlled by temperature changes. In the case of solvent adsorption, the temperature influences the amount of adsorbed solvent as well as the enthalpy and entropy of the solvation process. In this work, the thermodynamic parameters of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281355/ https://www.ncbi.nlm.nih.gov/pubmed/25568463 http://dx.doi.org/10.1007/s10337-014-2788-4 |
Sumario: | Elution and solvation processes in liquid chromatography may be controlled by temperature changes. In the case of solvent adsorption, the temperature influences the amount of adsorbed solvent as well as the enthalpy and entropy of the solvation process. In this work, the thermodynamic parameters of organic solvents used as organic modifiers in the reversed-phase high-performance liquid chromatography elution process were determined. The changes of enthalpy and entropy in a series of chemically bonded stationary phases were measured to determine the effects of the temperature and surface coverage density of octadecyl ligands on the thermodynamic parameters of the solvation. For both the enthalpy and entropy a parabolic trend was observed with the minimum for medium surface coverage. The correlation of solvent adsorption values with the enthalpy of solvation was also investigated. The highest influence of the temperature on solvation process was observed for stationary phases with high surface coverage. |
---|