Cargando…

Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection

Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in...

Descripción completa

Detalles Bibliográficos
Autores principales: Meziou, L., Histace, A., Precioso, F., Romain, O., Dray, X., Granado, B., Matuszewski, B. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281406/
https://www.ncbi.nlm.nih.gov/pubmed/25587264
http://dx.doi.org/10.1155/2014/428583
_version_ 1782350992392585216
author Meziou, L.
Histace, A.
Precioso, F.
Romain, O.
Dray, X.
Granado, B.
Matuszewski, B. J.
author_facet Meziou, L.
Histace, A.
Precioso, F.
Romain, O.
Dray, X.
Granado, B.
Matuszewski, B. J.
author_sort Meziou, L.
collection PubMed
description Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in the 1990s as an alternative to videoendoscopy to allow direct examination of the gastrointestinal tract without any need for sedation. Nevertheless, the systematic postexamination by the specialist of the 50,000 (for the small bowel) to 150,000 images (for the colon) of a complete acquisition using WCE remains time-consuming and challenging due to the poor quality of WCE images. In this paper, a semiautomatic segmentation for analysis of WCE images is proposed. Based on active contour segmentation, the proposed method introduces alpha-divergences, a flexible statistical similarity measure that gives a real flexibility to different types of gastrointestinal pathologies. Results of segmentation using the proposed approach are shown on different types of real-case examinations, from (multi)polyp(s) segmentation, to radiation enteritis delineation.
format Online
Article
Text
id pubmed-4281406
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-42814062015-01-13 Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection Meziou, L. Histace, A. Precioso, F. Romain, O. Dray, X. Granado, B. Matuszewski, B. J. Int J Biomed Imaging Research Article Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in the 1990s as an alternative to videoendoscopy to allow direct examination of the gastrointestinal tract without any need for sedation. Nevertheless, the systematic postexamination by the specialist of the 50,000 (for the small bowel) to 150,000 images (for the colon) of a complete acquisition using WCE remains time-consuming and challenging due to the poor quality of WCE images. In this paper, a semiautomatic segmentation for analysis of WCE images is proposed. Based on active contour segmentation, the proposed method introduces alpha-divergences, a flexible statistical similarity measure that gives a real flexibility to different types of gastrointestinal pathologies. Results of segmentation using the proposed approach are shown on different types of real-case examinations, from (multi)polyp(s) segmentation, to radiation enteritis delineation. Hindawi Publishing Corporation 2014 2014-12-18 /pmc/articles/PMC4281406/ /pubmed/25587264 http://dx.doi.org/10.1155/2014/428583 Text en Copyright © 2014 L. Meziou et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Meziou, L.
Histace, A.
Precioso, F.
Romain, O.
Dray, X.
Granado, B.
Matuszewski, B. J.
Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_full Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_fullStr Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_full_unstemmed Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_short Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_sort computer-assisted segmentation of videocapsule images using alpha-divergence-based active contour in the framework of intestinal pathologies detection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281406/
https://www.ncbi.nlm.nih.gov/pubmed/25587264
http://dx.doi.org/10.1155/2014/428583
work_keys_str_mv AT mezioul computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT histacea computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT preciosof computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT romaino computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT drayx computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT granadob computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT matuszewskibj computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection