Cargando…
Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281406/ https://www.ncbi.nlm.nih.gov/pubmed/25587264 http://dx.doi.org/10.1155/2014/428583 |
_version_ | 1782350992392585216 |
---|---|
author | Meziou, L. Histace, A. Precioso, F. Romain, O. Dray, X. Granado, B. Matuszewski, B. J. |
author_facet | Meziou, L. Histace, A. Precioso, F. Romain, O. Dray, X. Granado, B. Matuszewski, B. J. |
author_sort | Meziou, L. |
collection | PubMed |
description | Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in the 1990s as an alternative to videoendoscopy to allow direct examination of the gastrointestinal tract without any need for sedation. Nevertheless, the systematic postexamination by the specialist of the 50,000 (for the small bowel) to 150,000 images (for the colon) of a complete acquisition using WCE remains time-consuming and challenging due to the poor quality of WCE images. In this paper, a semiautomatic segmentation for analysis of WCE images is proposed. Based on active contour segmentation, the proposed method introduces alpha-divergences, a flexible statistical similarity measure that gives a real flexibility to different types of gastrointestinal pathologies. Results of segmentation using the proposed approach are shown on different types of real-case examinations, from (multi)polyp(s) segmentation, to radiation enteritis delineation. |
format | Online Article Text |
id | pubmed-4281406 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-42814062015-01-13 Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection Meziou, L. Histace, A. Precioso, F. Romain, O. Dray, X. Granado, B. Matuszewski, B. J. Int J Biomed Imaging Research Article Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in the 1990s as an alternative to videoendoscopy to allow direct examination of the gastrointestinal tract without any need for sedation. Nevertheless, the systematic postexamination by the specialist of the 50,000 (for the small bowel) to 150,000 images (for the colon) of a complete acquisition using WCE remains time-consuming and challenging due to the poor quality of WCE images. In this paper, a semiautomatic segmentation for analysis of WCE images is proposed. Based on active contour segmentation, the proposed method introduces alpha-divergences, a flexible statistical similarity measure that gives a real flexibility to different types of gastrointestinal pathologies. Results of segmentation using the proposed approach are shown on different types of real-case examinations, from (multi)polyp(s) segmentation, to radiation enteritis delineation. Hindawi Publishing Corporation 2014 2014-12-18 /pmc/articles/PMC4281406/ /pubmed/25587264 http://dx.doi.org/10.1155/2014/428583 Text en Copyright © 2014 L. Meziou et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Meziou, L. Histace, A. Precioso, F. Romain, O. Dray, X. Granado, B. Matuszewski, B. J. Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection |
title | Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection |
title_full | Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection |
title_fullStr | Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection |
title_full_unstemmed | Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection |
title_short | Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection |
title_sort | computer-assisted segmentation of videocapsule images using alpha-divergence-based active contour in the framework of intestinal pathologies detection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281406/ https://www.ncbi.nlm.nih.gov/pubmed/25587264 http://dx.doi.org/10.1155/2014/428583 |
work_keys_str_mv | AT mezioul computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection AT histacea computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection AT preciosof computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection AT romaino computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection AT drayx computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection AT granadob computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection AT matuszewskibj computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection |