Cargando…

Neurochemical mechanism of the gastrointestinal interdigestive migrating motor complex in rats with acute inflammatory stomach ache

The normal gastrointestinal interdigestive migrating motor complex cycle was interrupted, and paroxysmal contraction appeared after formaldehyde-induced stomach ache. Activities of nitric oxide synthase, acetylcholinesterase and vasoactive intestinal peptide neurons were significantly reduced, where...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xiaoli, Li, Qin, Zhou, Lv, Ru, Liqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281416/
https://www.ncbi.nlm.nih.gov/pubmed/25558227
http://dx.doi.org/10.3969/j.issn.1673-5374.2012.27.008
Descripción
Sumario:The normal gastrointestinal interdigestive migrating motor complex cycle was interrupted, and paroxysmal contraction appeared after formaldehyde-induced stomach ache. Activities of nitric oxide synthase, acetylcholinesterase and vasoactive intestinal peptide neurons were significantly reduced, whereas activities of calcitonin gene-related peptide neurons were significantly increased in the pyloric sphincter muscular layer, myenteric nerve plexus and submucous nerve plexus. Electroacupuncture at Zusanli (ST36) suppressed paroxysmal contraction in rats with formaldehyde-induced stomach ache, and neurons in the enteric nervous system were normal. These results indicated that nitrergic neurons, cholinergic neurons, vasoactive intestinal peptide neurons and calcitonin gene-related peptide neurons in the enteric nervous system may be involved in changes to the gastrointestinal interdigestive migrating motor complex following stomach ache, and that electroacupuncture can regulate this process.