Cargando…
Predicting 5-Year Survival Status of Patients with Breast Cancer based on Supervised Wavelet Method
OBJECTIVES: Classification of breast cancer patients into different risk classes is very important in clinical applications. It is estimated that the advent of high-dimensional gene expression data could improve patient classification. In this study, a new method for transforming the high-dimensiona...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281603/ https://www.ncbi.nlm.nih.gov/pubmed/25562040 http://dx.doi.org/10.1016/j.phrp.2014.09.002 |
Sumario: | OBJECTIVES: Classification of breast cancer patients into different risk classes is very important in clinical applications. It is estimated that the advent of high-dimensional gene expression data could improve patient classification. In this study, a new method for transforming the high-dimensional gene expression data in a low-dimensional space based on wavelet transform (WT) is presented. METHODS: The proposed method was applied to three publicly available microarray data sets. After dimensionality reduction using supervised wavelet, a predictive support vector machine (SVM) model was built upon the reduced dimensional space. In addition, the proposed method was compared with the supervised principal component analysis (PCA). RESULTS: The performance of supervised wavelet and supervised PCA based on selected genes were better than the signature genes identified in the other studies. Furthermore, the supervised wavelet method generally performed better than the supervised PCA for predicting the 5-year survival status of patients with breast cancer based on microarray data. In addition, the proposed method had a relatively acceptable performance compared with the other studies. CONCLUSION: The results suggest the possibility of developing a new tool using wavelets for the dimension reduction of microarray data sets in the classification framework. |
---|