Cargando…

Drivers and Trajectories of Resistance to New First-Line Drug Regimens for Tuberculosis

BACKGROUND:  New first-line drug regimens for treatment of tuberculosis (TB) are in clinical trials: emergence of resistance is a key concern. Because population-level data on resistance cannot be collected in advance, epidemiological models are important tools for understanding the drivers and dyna...

Descripción completa

Detalles Bibliográficos
Autores principales: Shrestha, Sourya, Knight, Gwenan M., Fofana, Mariam, Cohen, Ted, White, Richard G., Cobelens, Frank, Dowdy, David W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281792/
https://www.ncbi.nlm.nih.gov/pubmed/25734143
http://dx.doi.org/10.1093/ofid/ofu073
Descripción
Sumario:BACKGROUND:  New first-line drug regimens for treatment of tuberculosis (TB) are in clinical trials: emergence of resistance is a key concern. Because population-level data on resistance cannot be collected in advance, epidemiological models are important tools for understanding the drivers and dynamics of resistance before novel drug regimens are launched. METHODS:  We developed a transmission model of TB after launch of a new drug regimen, defining drug-resistant TB (DR-TB) as resistance to the new regimen. The model is characterized by (1) the probability of acquiring resistance during treatment, (2) the transmission fitness of DR-TB relative to drug-susceptible TB (DS-TB), and (3) the probability of treatment success for DR-TB versus DS-TB. We evaluate the effect of each factor on future DR-TB prevalence, defined as the proportion of incident TB that is drug-resistant. RESULTS:  Probability of acquired resistance was the strongest predictor of the DR-TB proportion in the first 5 years after the launch of a new drug regimen. Over a longer term, however, the DR-TB proportion was driven by the resistant population's transmission fitness and treatment success rates. Regardless of uncertainty in acquisition probability and transmission fitness, high levels (>10%) of drug resistance were unlikely to emerge within 50 years if, among all cases of TB that were detected, 85% of those with DR-TB could be appropriately diagnosed as such and then successfully treated. CONCLUSIONS:  Short-term surveillance cannot predict long-term drug resistance trends after launch of novel first-line TB regimens. Ensuring high treatment success of drug-resistant TB through early diagnosis and appropriate second-line therapy can mitigate many epidemiological uncertainties and may substantially slow the emergence of drug-resistant TB.