Cargando…

Effects of spatial resolution and noise on gamma analysis for IMRT QA

We investigated the sensitivity of the gamma index to two factors: the spatial resolution and the noise level in the measured dose distribution. We also examined how the choice of reference distribution and analysis software affect the sensitivity of gamma analysis to these two factors for quality a...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Jessie Y., Pulliam, Kiley B., McKenzie, Elizabeth M., Followill, David S., Kry, Stephen F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283459/
https://www.ncbi.nlm.nih.gov/pubmed/25207399
http://dx.doi.org/10.1120/jacmp.v15i4.4690
_version_ 1782351270377422848
author Huang, Jessie Y.
Pulliam, Kiley B.
McKenzie, Elizabeth M.
Followill, David S.
Kry, Stephen F.
author_facet Huang, Jessie Y.
Pulliam, Kiley B.
McKenzie, Elizabeth M.
Followill, David S.
Kry, Stephen F.
author_sort Huang, Jessie Y.
collection PubMed
description We investigated the sensitivity of the gamma index to two factors: the spatial resolution and the noise level in the measured dose distribution. We also examined how the choice of reference distribution and analysis software affect the sensitivity of gamma analysis to these two factors for quality assurance (QA) of intensity‐modulated radiation therapy (IMRT) treatment plans. For ten clinical IMRT plans, the dose delivered to a transverse dose plane was measured with EDR2 radiographic film. To evaluate the effects of spatial resolution, each irradiated film was digitized using three different resolutions (71, 142, and 285 dpi). To evaluate the effects of image noise, 1% and 2% local Gaussian noise was added to the film images. Gamma analysis was performed using 2%/2 mm and 3%/3 mm acceptance criteria and two commercial software packages, OmniPro I'mRT and DoseLab Pro. Dose comparisons were performed with the treatment planning system (TPS)‐calculated dose as the reference, and then repeated with the film as the reference to evaluate how the choice of reference distribution affects the results of dose comparisons. When the TPS‐calculated dose was designated as the reference distribution, the percentage of pixels with passing gamma values increased with both increasing resolution and noise. For 3%/3 mm acceptance criteria, increasing the film image resolution by a factor of two and by a factor of four caused a median increase of 0.9% and 2.6%, respectively, in the percentage of pixels passing. Increasing the noise level in the film image resulted in a median increase in percentage of pixels passing of 5.5% for 1% added local Gaussian noise and 5.8% for 2% added noise. In contrast, when the film was designated as the reference distribution, the percentage of pixels passing decreased with increased film noise, while increased resolution had no significant effect on passing rates. Furthermore, the sensitivity of gamma analysis to noise and resolution differed between OmniPro I'mRT and DoseLab Pro, with DoseLab Pro being less sensitive to the effects of noise and resolution. Noise and high scanning resolution can artificially increase the percentage of pixels with passing gamma values in IMRT QA. Thus, these factors, if not properly taken into account, can potentially affect the results of IMRT QA by causing a plan that should be classified as failing to be falsely classified as passing. In designing IMRT QA protocols, it is important to be aware that gamma analysis is sensitive to these parameters. PACS number: 87.55.Qr, 87.55.km, 87.56.Fc
format Online
Article
Text
id pubmed-4283459
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-42834592018-04-02 Effects of spatial resolution and noise on gamma analysis for IMRT QA Huang, Jessie Y. Pulliam, Kiley B. McKenzie, Elizabeth M. Followill, David S. Kry, Stephen F. J Appl Clin Med Phys Radiation Oncology Physics We investigated the sensitivity of the gamma index to two factors: the spatial resolution and the noise level in the measured dose distribution. We also examined how the choice of reference distribution and analysis software affect the sensitivity of gamma analysis to these two factors for quality assurance (QA) of intensity‐modulated radiation therapy (IMRT) treatment plans. For ten clinical IMRT plans, the dose delivered to a transverse dose plane was measured with EDR2 radiographic film. To evaluate the effects of spatial resolution, each irradiated film was digitized using three different resolutions (71, 142, and 285 dpi). To evaluate the effects of image noise, 1% and 2% local Gaussian noise was added to the film images. Gamma analysis was performed using 2%/2 mm and 3%/3 mm acceptance criteria and two commercial software packages, OmniPro I'mRT and DoseLab Pro. Dose comparisons were performed with the treatment planning system (TPS)‐calculated dose as the reference, and then repeated with the film as the reference to evaluate how the choice of reference distribution affects the results of dose comparisons. When the TPS‐calculated dose was designated as the reference distribution, the percentage of pixels with passing gamma values increased with both increasing resolution and noise. For 3%/3 mm acceptance criteria, increasing the film image resolution by a factor of two and by a factor of four caused a median increase of 0.9% and 2.6%, respectively, in the percentage of pixels passing. Increasing the noise level in the film image resulted in a median increase in percentage of pixels passing of 5.5% for 1% added local Gaussian noise and 5.8% for 2% added noise. In contrast, when the film was designated as the reference distribution, the percentage of pixels passing decreased with increased film noise, while increased resolution had no significant effect on passing rates. Furthermore, the sensitivity of gamma analysis to noise and resolution differed between OmniPro I'mRT and DoseLab Pro, with DoseLab Pro being less sensitive to the effects of noise and resolution. Noise and high scanning resolution can artificially increase the percentage of pixels with passing gamma values in IMRT QA. Thus, these factors, if not properly taken into account, can potentially affect the results of IMRT QA by causing a plan that should be classified as failing to be falsely classified as passing. In designing IMRT QA protocols, it is important to be aware that gamma analysis is sensitive to these parameters. PACS number: 87.55.Qr, 87.55.km, 87.56.Fc John Wiley and Sons Inc. 2014-07-08 /pmc/articles/PMC4283459/ /pubmed/25207399 http://dx.doi.org/10.1120/jacmp.v15i4.4690 Text en © 2014 The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by/3.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Radiation Oncology Physics
Huang, Jessie Y.
Pulliam, Kiley B.
McKenzie, Elizabeth M.
Followill, David S.
Kry, Stephen F.
Effects of spatial resolution and noise on gamma analysis for IMRT QA
title Effects of spatial resolution and noise on gamma analysis for IMRT QA
title_full Effects of spatial resolution and noise on gamma analysis for IMRT QA
title_fullStr Effects of spatial resolution and noise on gamma analysis for IMRT QA
title_full_unstemmed Effects of spatial resolution and noise on gamma analysis for IMRT QA
title_short Effects of spatial resolution and noise on gamma analysis for IMRT QA
title_sort effects of spatial resolution and noise on gamma analysis for imrt qa
topic Radiation Oncology Physics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283459/
https://www.ncbi.nlm.nih.gov/pubmed/25207399
http://dx.doi.org/10.1120/jacmp.v15i4.4690
work_keys_str_mv AT huangjessiey effectsofspatialresolutionandnoiseongammaanalysisforimrtqa
AT pulliamkileyb effectsofspatialresolutionandnoiseongammaanalysisforimrtqa
AT mckenzieelizabethm effectsofspatialresolutionandnoiseongammaanalysisforimrtqa
AT followilldavids effectsofspatialresolutionandnoiseongammaanalysisforimrtqa
AT krystephenf effectsofspatialresolutionandnoiseongammaanalysisforimrtqa