Cargando…

OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice

Selenite is a predominant form of selenium (Se) available to plants, especially in anaerobic soils, but the molecular mechanism of selenite uptake by plants is not well understood. ltn1, a rice mutant previously shown to have increased phosphate (Pi) uptake, was found to exhibit higher selenite upta...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lianhe, Hu, Bin, Li, Wei, Che, Ronghui, Deng, Kun, Li, Hua, Yu, Feiyan, Ling, Hongqing, Li, Youjun, Chu, Chengcai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4284032/
https://www.ncbi.nlm.nih.gov/pubmed/24491113
http://dx.doi.org/10.1111/nph.12596
Descripción
Sumario:Selenite is a predominant form of selenium (Se) available to plants, especially in anaerobic soils, but the molecular mechanism of selenite uptake by plants is not well understood. ltn1, a rice mutant previously shown to have increased phosphate (Pi) uptake, was found to exhibit higher selenite uptake than the wild-type in both concentration- and time-dependent selenite uptake assays. Respiratory inhibitors significantly inhibited selenite uptake in the wildtype and the ltn1 mutant, indicating that selenite uptake was coupled with H(+) and energy-dependent. Selenite uptake was greatly enhanced under Pi-starvation conditions, suggesting that Pi transporters are involved in selenite uptake. OsPT2, the most abundantly expressed Pi transporter in the roots, is also significantly up-regulated in ltn1 and dramatically induced by Pi starvation. OsPT2-overexpressing and knockdown plants displayed significantly increased and decreased rates of selenite uptake, respectively, suggesting that OsPT2 plays a crucial role in selenite uptake. Se content in rice grains also increased significantly in OsPT2-overexpressing plants. These data strongly demonstrate that selenite and Pi share similar uptake mechanisms and that OsPT2 is involved in selenite uptake, which provides a potential strategy for breeding Se-enriched rice varieties.