Cargando…

Lactoferrin during lactation protects the immature hypoxic-ischemic rat brain

OBJECTIVE: Lactoferrin (Lf) is an iron-binding glycoprotein secreted in maternal milk presenting anti-inflammatory and antioxidant properties. It shows efficient absorption into the brain from nutritional source. Brain injury frequently resulting from cerebral hypoxia-ischemia (HI) has a high incide...

Descripción completa

Detalles Bibliográficos
Autores principales: van de Looij, Yohan, Ginet, Vanessa, Chatagner, Alexandra, Toulotte, Audrey, Somm, Emmanuel, Hüppi, Petra S, Sizonenko, Stéphane V
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4284122/
https://www.ncbi.nlm.nih.gov/pubmed/25574471
http://dx.doi.org/10.1002/acn3.138
Descripción
Sumario:OBJECTIVE: Lactoferrin (Lf) is an iron-binding glycoprotein secreted in maternal milk presenting anti-inflammatory and antioxidant properties. It shows efficient absorption into the brain from nutritional source. Brain injury frequently resulting from cerebral hypoxia-ischemia (HI) has a high incidence in premature infants with ensuing neurodevelopmental disabilities. We investigated the neuroprotective effect of maternal nutritional supplementation with Lf during lactation in a rat model of preterm HI brain injury using magnetic resonance imaging (MRI), brain gene, and protein expression. METHODS: Moderate brain HI was induced using unilateral common carotid artery occlusion combined with hypoxia (6%, 30 min) in the postnatal day 3 (P3) rat brain (24–28 weeks human equivalent). High-field multimodal MRI techniques were used to investigate the effect of maternal Lf supplementation through lactation. Expression of cytokine coding genes (TNF-α and IL-6), the prosurvival/antiapoptotic AKT protein and caspase-3 activation were also analyzed in the acute phase after HI. RESULTS: MRI analysis demonstrated reduced cortical injury in Lf rats few hours post-HI and in long-term outcome (P25). Lf reduced HI-induced modifications of the cortical metabolism and altered white matter microstructure was recovered in Lf-supplemented rats at P25. Lf supplementation significantly decreased brain TNF-α and IL-6 gene transcription, increased phosphorylated AKT levels and reduced activation of caspase-3 at 24 h post-injury. INTERPRETATION: Lf given through lactation to rat pups with cerebral HI injury shows neuroprotective effects on brain metabolism, and cerebral gray and white matter recovery. This nutritional intervention may be of high interest for the clinical field of preterm brain neuroprotection.