Cargando…
Human brain arteriovenous malformations express lymphatic-associated genes
OBJECTIVE: Brain arteriovenous malformations (AVMs) are devastating, hemorrhage-prone, cerebrovascular lesions characterized by well-defined feeding arteries, draining vein(s) and the absence of a capillary bed. The endothelial cells (ECs) that comprise AVMs exhibit a loss of arterial and venous spe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4284124/ https://www.ncbi.nlm.nih.gov/pubmed/25574473 http://dx.doi.org/10.1002/acn3.142 |
_version_ | 1782351369839050752 |
---|---|
author | Shoemaker, Lorelei D Fuentes, Laurel F Santiago, Shauna M Allen, Breanna M Cook, Douglas J Steinberg, Gary K Chang, Steven D |
author_facet | Shoemaker, Lorelei D Fuentes, Laurel F Santiago, Shauna M Allen, Breanna M Cook, Douglas J Steinberg, Gary K Chang, Steven D |
author_sort | Shoemaker, Lorelei D |
collection | PubMed |
description | OBJECTIVE: Brain arteriovenous malformations (AVMs) are devastating, hemorrhage-prone, cerebrovascular lesions characterized by well-defined feeding arteries, draining vein(s) and the absence of a capillary bed. The endothelial cells (ECs) that comprise AVMs exhibit a loss of arterial and venous specification. Given the role of the transcription factor COUP-TFII in vascular development, EC specification, and pathological angiogenesis, we examined human AVM tissue to determine if COUP-FTII may have a role in AVM disease biology. METHODS: We examined 40 human brain AVMs by immunohistochemistry (IHC) and qRT-PCR for the expression of COUP-TFII as well as other genes involved in venous and lymphatic development, maintenance, and signaling. We also examined proliferation and EC tube formation with human umbilical ECs (HUVEC) following COUP-TFII overexpression. RESULTS: We report that AVMs expressed COUP-TFII, SOX18, PROX1, NFATC1, FOXC2, TBX1, LYVE1, Podoplanin, and vascular endothelial growth factor (VEGF)-C, contained Ki67-positive cells and heterogeneously expressed genes involved in Hedgehog, Notch, Wnt, and VEGF signaling pathways. Overexpression of COUP-TFII alone in vitro resulted in increased EC proliferation and dilated tubes in an EC tube formation assay in HUVEC. INTERPRETATION: This suggests AVM ECs are further losing their arterial/venous specificity and acquiring a partial lymphatic molecular phenotype. There was significant correlation of gene expression with presence of clinical edema and acute hemorrhage. While the precise role of these genes in the formation, stabilization, growth and risk of hemorrhage of AVMs remains unclear, these findings have potentially important implications for patient management and treatment choice, and opens new avenues for future work on AVM disease mechanisms. |
format | Online Article Text |
id | pubmed-4284124 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-42841242015-01-08 Human brain arteriovenous malformations express lymphatic-associated genes Shoemaker, Lorelei D Fuentes, Laurel F Santiago, Shauna M Allen, Breanna M Cook, Douglas J Steinberg, Gary K Chang, Steven D Ann Clin Transl Neurol Research Articles OBJECTIVE: Brain arteriovenous malformations (AVMs) are devastating, hemorrhage-prone, cerebrovascular lesions characterized by well-defined feeding arteries, draining vein(s) and the absence of a capillary bed. The endothelial cells (ECs) that comprise AVMs exhibit a loss of arterial and venous specification. Given the role of the transcription factor COUP-TFII in vascular development, EC specification, and pathological angiogenesis, we examined human AVM tissue to determine if COUP-FTII may have a role in AVM disease biology. METHODS: We examined 40 human brain AVMs by immunohistochemistry (IHC) and qRT-PCR for the expression of COUP-TFII as well as other genes involved in venous and lymphatic development, maintenance, and signaling. We also examined proliferation and EC tube formation with human umbilical ECs (HUVEC) following COUP-TFII overexpression. RESULTS: We report that AVMs expressed COUP-TFII, SOX18, PROX1, NFATC1, FOXC2, TBX1, LYVE1, Podoplanin, and vascular endothelial growth factor (VEGF)-C, contained Ki67-positive cells and heterogeneously expressed genes involved in Hedgehog, Notch, Wnt, and VEGF signaling pathways. Overexpression of COUP-TFII alone in vitro resulted in increased EC proliferation and dilated tubes in an EC tube formation assay in HUVEC. INTERPRETATION: This suggests AVM ECs are further losing their arterial/venous specificity and acquiring a partial lymphatic molecular phenotype. There was significant correlation of gene expression with presence of clinical edema and acute hemorrhage. While the precise role of these genes in the formation, stabilization, growth and risk of hemorrhage of AVMs remains unclear, these findings have potentially important implications for patient management and treatment choice, and opens new avenues for future work on AVM disease mechanisms. Blackwell Publishing Ltd 2014-12 2014-11-18 /pmc/articles/PMC4284124/ /pubmed/25574473 http://dx.doi.org/10.1002/acn3.142 Text en © 2014 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Shoemaker, Lorelei D Fuentes, Laurel F Santiago, Shauna M Allen, Breanna M Cook, Douglas J Steinberg, Gary K Chang, Steven D Human brain arteriovenous malformations express lymphatic-associated genes |
title | Human brain arteriovenous malformations express lymphatic-associated genes |
title_full | Human brain arteriovenous malformations express lymphatic-associated genes |
title_fullStr | Human brain arteriovenous malformations express lymphatic-associated genes |
title_full_unstemmed | Human brain arteriovenous malformations express lymphatic-associated genes |
title_short | Human brain arteriovenous malformations express lymphatic-associated genes |
title_sort | human brain arteriovenous malformations express lymphatic-associated genes |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4284124/ https://www.ncbi.nlm.nih.gov/pubmed/25574473 http://dx.doi.org/10.1002/acn3.142 |
work_keys_str_mv | AT shoemakerloreleid humanbrainarteriovenousmalformationsexpresslymphaticassociatedgenes AT fuenteslaurelf humanbrainarteriovenousmalformationsexpresslymphaticassociatedgenes AT santiagoshaunam humanbrainarteriovenousmalformationsexpresslymphaticassociatedgenes AT allenbreannam humanbrainarteriovenousmalformationsexpresslymphaticassociatedgenes AT cookdouglasj humanbrainarteriovenousmalformationsexpresslymphaticassociatedgenes AT steinberggaryk humanbrainarteriovenousmalformationsexpresslymphaticassociatedgenes AT changstevend humanbrainarteriovenousmalformationsexpresslymphaticassociatedgenes |