Cargando…

Chromium and nickel in Pteridium aquilinum from environments with various levels of these metals

Pteridium aquilinum is a ubiquitous species considered to be one of the plants most resistant to metals. This fern meets the demands for a good bioindicator to improve environmental control. Therefore, it was of interest to survey the accumulation of Cr and Ni in the rhizome and fronds of this speci...

Descripción completa

Detalles Bibliográficos
Autores principales: Kubicka, Kamila, Samecka-Cymerman, Aleksandra, Kolon, Krzysztof, Kosiba, Piotr, Kempers, Alexander J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4284395/
https://www.ncbi.nlm.nih.gov/pubmed/25087499
http://dx.doi.org/10.1007/s11356-014-3379-5
Descripción
Sumario:Pteridium aquilinum is a ubiquitous species considered to be one of the plants most resistant to metals. This fern meets the demands for a good bioindicator to improve environmental control. Therefore, it was of interest to survey the accumulation of Cr and Ni in the rhizome and fronds of this species collected in Lower Silesia (SW Poland) of serpentinite rich in Cr and Ni and granite poor in these metals. Additionally, concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were measured in granite and serpentinite parent rocks, soils, and in P. aquilinum (rhizome and fronds). The experiment was carried out with rhizomes of ferns from both types of soils placed in pots supplemented with 50, 100, and 250 mg kg(−1) of Cr or Ni or both elements together. At a concentration of 250 mg kg(−1) of Cr, Ni, or Cr + Ni, fronds (from granite or serpentinite origin) contained significantly higher Cr and Ni concentrations when both metals were supplied together. In the same concentration of 250 mg kg(−1) of Cr, Ni, or Cr + Ni, rhizomes (from granite or serpentinite origin) contained significantly higher Cr and Ni concentrations when both metals were supplied separately. The explanation of metal differences in the joint accumulation of Cr and Ni on the rhizome or frond level needs further investigation. The lack of difference in Cr and Ni concentration in the rhizome and fronds between experimental P. aquilinum collected from granite and serpentinite soils may probably indicate that the phenotypic plasticity of this species is very important in the adaptation to extreme environments.