Cargando…
Interpreting observational studies: why empirical calibration is needed to correct p-values
Often the literature makes assertions of medical product effects on the basis of ‘ p < 0.05’. The underlying premise is that at this threshold, there is only a 5% probability that the observed effect would be seen by chance when in reality there is no effect. In observational studies, much more t...
Autores principales: | Schuemie, Martijn J, Ryan, Patrick B, DuMouchel, William, Suchard, Marc A, Madigan, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285234/ https://www.ncbi.nlm.nih.gov/pubmed/23900808 http://dx.doi.org/10.1002/sim.5925 |
Ejemplares similares
-
Robust empirical calibration of p‐values using observational data
por: Schuemie, Martijn J., et al.
Publicado: (2016) -
Improving reproducibility by using high-throughput observational studies with empirical calibration
por: Schuemie, Martijn J., et al.
Publicado: (2018) -
Adjusting for both sequential testing and systematic error in safety surveillance using observational data: Empirical calibration and MaxSPRT
por: Schuemie, Martijn J., et al.
Publicado: (2023) -
Drawing Reproducible Conclusions from Observational Clinical Data with OHDSI
por: Hripcsak, George, et al.
Publicado: (2021) -
Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data
por: Reps, Jenna M, et al.
Publicado: (2018)