Cargando…

Finding Our Way through Phenotypes

Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental co...

Descripción completa

Detalles Bibliográficos
Autores principales: Deans, Andrew R., Lewis, Suzanna E., Huala, Eva, Anzaldo, Salvatore S., Ashburner, Michael, Balhoff, James P., Blackburn, David C., Blake, Judith A., Burleigh, J. Gordon, Chanet, Bruno, Cooper, Laurel D., Courtot, Mélanie, Csösz, Sándor, Cui, Hong, Dahdul, Wasila, Das, Sandip, Dececchi, T. Alexander, Dettai, Agnes, Diogo, Rui, Druzinsky, Robert E., Dumontier, Michel, Franz, Nico M., Friedrich, Frank, Gkoutos, George V., Haendel, Melissa, Harmon, Luke J., Hayamizu, Terry F., He, Yongqun, Hines, Heather M., Ibrahim, Nizar, Jackson, Laura M., Jaiswal, Pankaj, James-Zorn, Christina, Köhler, Sebastian, Lecointre, Guillaume, Lapp, Hilmar, Lawrence, Carolyn J., Le Novère, Nicolas, Lundberg, John G., Macklin, James, Mast, Austin R., Midford, Peter E., Mikó, István, Mungall, Christopher J., Oellrich, Anika, Osumi-Sutherland, David, Parkinson, Helen, Ramírez, Martín J., Richter, Stefan, Robinson, Peter N., Ruttenberg, Alan, Schulz, Katja S., Segerdell, Erik, Seltmann, Katja C., Sharkey, Michael J., Smith, Aaron D., Smith, Barry, Specht, Chelsea D., Squires, R. Burke, Thacker, Robert W., Thessen, Anne, Fernandez-Triana, Jose, Vihinen, Mauno, Vize, Peter D., Vogt, Lars, Wall, Christine E., Walls, Ramona L., Westerfeld, Monte, Wharton, Robert A., Wirkner, Christian S., Woolley, James B., Yoder, Matthew J., Zorn, Aaron M., Mabee, Paula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285398/
https://www.ncbi.nlm.nih.gov/pubmed/25562316
http://dx.doi.org/10.1371/journal.pbio.1002033
Descripción
Sumario:Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.