Cargando…

Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice

Kelch-like 1 (KLHL1) is a neuronal actin-binding protein that modulates voltage-gated Ca(V)2.1 (P/Q-type) and Ca(V)3.2 (α(1H) T-type) calcium channels; KLHL1 knockdown experiments (KD) cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Perissinotti, Paula P., Ethington, Elizabeth A., Almazan, Erik, Martínez-Hernández, Elizabeth, Kalil, Jennifer, Koob, Michael D., Piedras-Rentería, Erika S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285801/
https://www.ncbi.nlm.nih.gov/pubmed/25610372
http://dx.doi.org/10.3389/fncel.2014.00444
_version_ 1782351598917255168
author Perissinotti, Paula P.
Ethington, Elizabeth A.
Almazan, Erik
Martínez-Hernández, Elizabeth
Kalil, Jennifer
Koob, Michael D.
Piedras-Rentería, Erika S.
author_facet Perissinotti, Paula P.
Ethington, Elizabeth A.
Almazan, Erik
Martínez-Hernández, Elizabeth
Kalil, Jennifer
Koob, Michael D.
Piedras-Rentería, Erika S.
author_sort Perissinotti, Paula P.
collection PubMed
description Kelch-like 1 (KLHL1) is a neuronal actin-binding protein that modulates voltage-gated Ca(V)2.1 (P/Q-type) and Ca(V)3.2 (α(1H) T-type) calcium channels; KLHL1 knockdown experiments (KD) cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014). Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO) mice. Western blot data showed the P/Q-type channel α(1A) subunit was less abundant in KO hippocampus compared to wildtype (WT); and P/Q-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with Ca(V)3.2 α(1H) subunit being down-regulated and Ca(V)3.1 α(1G) up-regulated. Synapsin I levels were also reduced in the KO hippocampus and cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC) frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition.
format Online
Article
Text
id pubmed-4285801
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-42858012015-01-21 Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice Perissinotti, Paula P. Ethington, Elizabeth A. Almazan, Erik Martínez-Hernández, Elizabeth Kalil, Jennifer Koob, Michael D. Piedras-Rentería, Erika S. Front Cell Neurosci Neuroscience Kelch-like 1 (KLHL1) is a neuronal actin-binding protein that modulates voltage-gated Ca(V)2.1 (P/Q-type) and Ca(V)3.2 (α(1H) T-type) calcium channels; KLHL1 knockdown experiments (KD) cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014). Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO) mice. Western blot data showed the P/Q-type channel α(1A) subunit was less abundant in KO hippocampus compared to wildtype (WT); and P/Q-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with Ca(V)3.2 α(1H) subunit being down-regulated and Ca(V)3.1 α(1G) up-regulated. Synapsin I levels were also reduced in the KO hippocampus and cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC) frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition. Frontiers Media S.A. 2015-01-07 /pmc/articles/PMC4285801/ /pubmed/25610372 http://dx.doi.org/10.3389/fncel.2014.00444 Text en Copyright © 2015 Perissinotti, Ethington, Almazan, Martínez-Hernández, Kalil, Koob and Piedras-Renteria. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Perissinotti, Paula P.
Ethington, Elizabeth A.
Almazan, Erik
Martínez-Hernández, Elizabeth
Kalil, Jennifer
Koob, Michael D.
Piedras-Rentería, Erika S.
Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice
title Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice
title_full Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice
title_fullStr Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice
title_full_unstemmed Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice
title_short Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice
title_sort calcium current homeostasis and synaptic deficits in hippocampal neurons from kelch-like 1 knockout mice
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285801/
https://www.ncbi.nlm.nih.gov/pubmed/25610372
http://dx.doi.org/10.3389/fncel.2014.00444
work_keys_str_mv AT perissinottipaulap calciumcurrenthomeostasisandsynapticdeficitsinhippocampalneuronsfromkelchlike1knockoutmice
AT ethingtonelizabetha calciumcurrenthomeostasisandsynapticdeficitsinhippocampalneuronsfromkelchlike1knockoutmice
AT almazanerik calciumcurrenthomeostasisandsynapticdeficitsinhippocampalneuronsfromkelchlike1knockoutmice
AT martinezhernandezelizabeth calciumcurrenthomeostasisandsynapticdeficitsinhippocampalneuronsfromkelchlike1knockoutmice
AT kaliljennifer calciumcurrenthomeostasisandsynapticdeficitsinhippocampalneuronsfromkelchlike1knockoutmice
AT koobmichaeld calciumcurrenthomeostasisandsynapticdeficitsinhippocampalneuronsfromkelchlike1knockoutmice
AT piedrasrenteriaerikas calciumcurrenthomeostasisandsynapticdeficitsinhippocampalneuronsfromkelchlike1knockoutmice