Cargando…
Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17
Plants show considerable within-species variation in their resistance to insect herbivores. In the case of Zea mays (cultivated maize), Rhopalosiphum maidis (corn leaf aphids) produce approximately twenty times more progeny on inbred line B73 than on inbred line Mo17. Genetic mapping of this differe...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286405/ https://www.ncbi.nlm.nih.gov/pubmed/25249072 http://dx.doi.org/10.1093/jxb/eru379 |
_version_ | 1782351667395559424 |
---|---|
author | Betsiashvili, Mariam Ahern, Kevin R. Jander, Georg |
author_facet | Betsiashvili, Mariam Ahern, Kevin R. Jander, Georg |
author_sort | Betsiashvili, Mariam |
collection | PubMed |
description | Plants show considerable within-species variation in their resistance to insect herbivores. In the case of Zea mays (cultivated maize), Rhopalosiphum maidis (corn leaf aphids) produce approximately twenty times more progeny on inbred line B73 than on inbred line Mo17. Genetic mapping of this difference in maize aphid resistance identified quantitative trait loci (QTL) on chromosomes 4 and 6, with the Mo17 allele reducing aphid reproduction in each case. The chromosome 4 QTL mapping interval includes several genes involved in the biosynthesis of DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), a maize defensive metabolite that also is required for callose accumulation in response to aphid feeding. Consistent with the known association of callose with plant defence against aphids, R. maidis reproduction on B73×Mo17 recombinant inbred lines was negatively correlated with both DIMBOA content and callose formation. Further genetic mapping, as well as experiments with near-isogenic lines, confirmed that the Mo17 allele causes increased DIMBOA accumulation relative to the B73 allele. The chromosome 6 aphid resistance QTL functions independently of DIMBOA accumulation and has an effect that is additive to that of the chromosome 4 QTL. Thus, at least two separate defence mechanisms account for the higher level of R. maidis resistance in Mo17 compared with B73. |
format | Online Article Text |
id | pubmed-4286405 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-42864052015-01-29 Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17 Betsiashvili, Mariam Ahern, Kevin R. Jander, Georg J Exp Bot Research Paper Plants show considerable within-species variation in their resistance to insect herbivores. In the case of Zea mays (cultivated maize), Rhopalosiphum maidis (corn leaf aphids) produce approximately twenty times more progeny on inbred line B73 than on inbred line Mo17. Genetic mapping of this difference in maize aphid resistance identified quantitative trait loci (QTL) on chromosomes 4 and 6, with the Mo17 allele reducing aphid reproduction in each case. The chromosome 4 QTL mapping interval includes several genes involved in the biosynthesis of DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), a maize defensive metabolite that also is required for callose accumulation in response to aphid feeding. Consistent with the known association of callose with plant defence against aphids, R. maidis reproduction on B73×Mo17 recombinant inbred lines was negatively correlated with both DIMBOA content and callose formation. Further genetic mapping, as well as experiments with near-isogenic lines, confirmed that the Mo17 allele causes increased DIMBOA accumulation relative to the B73 allele. The chromosome 6 aphid resistance QTL functions independently of DIMBOA accumulation and has an effect that is additive to that of the chromosome 4 QTL. Thus, at least two separate defence mechanisms account for the higher level of R. maidis resistance in Mo17 compared with B73. Oxford University Press 2015-02 2014-09-23 /pmc/articles/PMC4286405/ /pubmed/25249072 http://dx.doi.org/10.1093/jxb/eru379 Text en © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Betsiashvili, Mariam Ahern, Kevin R. Jander, Georg Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17 |
title | Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17 |
title_full | Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17 |
title_fullStr | Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17 |
title_full_unstemmed | Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17 |
title_short | Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17 |
title_sort | additive effects of two quantitative trait loci that confer rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line mo17 |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286405/ https://www.ncbi.nlm.nih.gov/pubmed/25249072 http://dx.doi.org/10.1093/jxb/eru379 |
work_keys_str_mv | AT betsiashvilimariam additiveeffectsoftwoquantitativetraitlocithatconferrhopalosiphummaidiscornleafaphidresistanceinmaizeinbredlinemo17 AT ahernkevinr additiveeffectsoftwoquantitativetraitlocithatconferrhopalosiphummaidiscornleafaphidresistanceinmaizeinbredlinemo17 AT jandergeorg additiveeffectsoftwoquantitativetraitlocithatconferrhopalosiphummaidiscornleafaphidresistanceinmaizeinbredlinemo17 |