Cargando…

Effect of Cordycepin-Enriched WIB801C from Cordyceps militaris Suppressing Fibrinogen Binding to Glycoprotein IIb/IIIa

In this study, we investigated the effects of cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha on collagen-stimulated platelet aggregation. CE-WIB801C dose dependently inhibited collagen-induced platelet aggregation, and had a synergistic effect together with cordyc...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Dong-Ha, Kim, Hyun-Hong, Lim, Deok Hwi, Kim, Jong-Lae, Park, Hwa-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Applied Pharmacology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286751/
https://www.ncbi.nlm.nih.gov/pubmed/25593645
http://dx.doi.org/10.4062/biomolther.2014.086
Descripción
Sumario:In this study, we investigated the effects of cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha on collagen-stimulated platelet aggregation. CE-WIB801C dose dependently inhibited collagen-induced platelet aggregation, and had a synergistic effect together with cordycepin (W-cordycepin) from CE-WIB801C on the inhibition of collagen-induced platelet aggregation. CE-WIB801C and cordycepin stimulated the phosphorylation of VASP (Ser(157)) and the dephosphorylation of PI3K and Akt, and inhibited the binding of fibrinogen to glycoprotein IIb/IIIa (αIIb/β(3)) and the release of ATP and serotonin in collagen-induced platelet aggregation. A-kinase inhibitor Rp-8-Br-cAMPS reduced CE-WIB801C-, and cordycepin-increased VASP (Ser(157)) phosphorylation, and increased CE-WIB801C-, and cordycepin-inhibited the fibrinogen binding to αIIb/β(3). Therefore, we demonstrate that CE-WIB801C-, and cordycepin-inhibited fibrinogen binding to αIIb/β(3) are due to stimulation of cAMP-dependent phosphorylation of VASP (Ser(157)), and inhibition of PI3K/Akt phosphorylation. These results strongly indicate that CE-WIB801C and cordycepin may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.