Cargando…

σ(N)-dependent control of acid resistance and the locus of enterocyte effacement in enterohemorrhagic Escherichia coli is activated by acetyl phosphate in a manner requiring flagellar regulator FlhDC and the σ(S) antagonist FliZ

In enterohemorrhagic Escherichia coli (EHEC), sigma factor N (σ(N)) regulates glutamate-dependent acid resistance (GDAR) and the locus of enterocyte effacement (LEE); discrete genetic systems that are required for transmission and virulence of this intestinal pathogen. Regulation of these systems re...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitra, Avishek, Fay, Pamela A, Vendura, Khoury W, Alla, Zimrisha, Carroll, Ronan K, Shaw, Lindsey N, Riordan, James T
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287178/
https://www.ncbi.nlm.nih.gov/pubmed/24931910
http://dx.doi.org/10.1002/mbo3.183
Descripción
Sumario:In enterohemorrhagic Escherichia coli (EHEC), sigma factor N (σ(N)) regulates glutamate-dependent acid resistance (GDAR) and the locus of enterocyte effacement (LEE); discrete genetic systems that are required for transmission and virulence of this intestinal pathogen. Regulation of these systems requires nitrogen regulatory protein C, NtrC, and is a consequence of NtrC-σ(N)-dependent reduction in the activity of sigma factor S (σ(S)). This study elucidates pathway components and stimuli for σ(N)-directed regulation of GDAR and the LEE in EHEC. Deletion of fliZ, the product of which reduces σ(S) activity, phenocopied rpoN (σ(N)) and ntrC null strains for GDAR and LEE control, acid resistance, and adherence. Upregulation of fliZ by NtrC-σ(N) was shown to be indirect and required an intact flagellar regulator flhDC. Activation of flhDC by NtrC-σ(N) and FlhDC-dependent regulation of GDAR and the LEE was dependent on σ(N)-promoter flhD(P)(2), and a newly described NtrC upstream activator sequence. Addition of ammonium chloride significantly altered expression of GDAR and LEE, acid resistance, and adherence, independently of rpoN, ntrC, and the NtrC sensor kinase, ntrB. Altering the availability of NtrC phosphodonor acetyl phosphate by growth without glucose, with acetate addition, or by deletion of acetate kinase ackA, abrogated NtrC-σ(N)-dependent control of flhDC, fliZ, GDAR, and the LEE.