Cargando…
Missing in space: an evaluation of imputation methods for missing data in spatial analysis of risk factors for type II diabetes
BACKGROUND: Spatial analysis is increasingly important for identifying modifiable geographic risk factors for disease. However, spatial health data from surveys are often incomplete, ranging from missing data for only a few variables, to missing data for many variables. For spatial analyses of healt...
Autores principales: | Baker, Jannah, White, Nicole, Mengersen, Kerrie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287494/ https://www.ncbi.nlm.nih.gov/pubmed/25410053 http://dx.doi.org/10.1186/1476-072X-13-47 |
Ejemplares similares
-
Spatial modelling of type II diabetes outcomes: a systematic review of approaches used
por: Baker, Jannah, et al.
Publicado: (2015) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Imputing missing genotypes: effects of methods and patterns of missing data
por: Ogut, Funda, et al.
Publicado: (2011) -
Imputation methods for missing data for polygenic models
por: Fridley, Brooke, et al.
Publicado: (2003) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018)