Cargando…
Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum
Riboswitches are RNA elements that regulate gene expression in response to their ligand. Although these regulations are thought to be performed without any aid of other factors, recent studies suggested the participation of protein factors such as transcriptional termination factor Rho and RNase in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288175/ https://www.ncbi.nlm.nih.gov/pubmed/25477389 http://dx.doi.org/10.1093/nar/gku1281 |
_version_ | 1782351923100254208 |
---|---|
author | Takemoto, Norihiko Tanaka, Yuya Inui, Masayuki |
author_facet | Takemoto, Norihiko Tanaka, Yuya Inui, Masayuki |
author_sort | Takemoto, Norihiko |
collection | PubMed |
description | Riboswitches are RNA elements that regulate gene expression in response to their ligand. Although these regulations are thought to be performed without any aid of other factors, recent studies suggested the participation of protein factors such as transcriptional termination factor Rho and RNase in some riboswitch regulations. However, to what extent these protein factors contribute to the regulation was unclear. Here, we studied the regulatory mechanism of the flavin mononucleotide (FMN) riboswitch of Corynebacterium glutamicum which controls the expression of downstream ribM gene. Our results showed that this riboswitch downregulates both ribM mRNA and RibM protein levels in FMN-rich cells. Analysis of mRNA stability and chromatin immunoprecipitation–real-time PCR analysis targeting RNA polymerase suggested the involvement of the mRNA degradation and premature transcriptional termination in this regulation, respectively. Simultaneous disruption of RNase E/G and Rho function completely abolished the regulation at the mRNA level. Also, the regulation at the protein level was largely diminished. However, some FMN-dependent regulation at the protein level remained, suggesting the presence of other minor regulatory mechanisms. Altogether, we demonstrated for the first time that two protein factors, Rho and RNase E/G, play a central role in the riboswitch-mediated gene expression control. |
format | Online Article Text |
id | pubmed-4288175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-42881752015-02-19 Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum Takemoto, Norihiko Tanaka, Yuya Inui, Masayuki Nucleic Acids Res RNA Riboswitches are RNA elements that regulate gene expression in response to their ligand. Although these regulations are thought to be performed without any aid of other factors, recent studies suggested the participation of protein factors such as transcriptional termination factor Rho and RNase in some riboswitch regulations. However, to what extent these protein factors contribute to the regulation was unclear. Here, we studied the regulatory mechanism of the flavin mononucleotide (FMN) riboswitch of Corynebacterium glutamicum which controls the expression of downstream ribM gene. Our results showed that this riboswitch downregulates both ribM mRNA and RibM protein levels in FMN-rich cells. Analysis of mRNA stability and chromatin immunoprecipitation–real-time PCR analysis targeting RNA polymerase suggested the involvement of the mRNA degradation and premature transcriptional termination in this regulation, respectively. Simultaneous disruption of RNase E/G and Rho function completely abolished the regulation at the mRNA level. Also, the regulation at the protein level was largely diminished. However, some FMN-dependent regulation at the protein level remained, suggesting the presence of other minor regulatory mechanisms. Altogether, we demonstrated for the first time that two protein factors, Rho and RNase E/G, play a central role in the riboswitch-mediated gene expression control. Oxford University Press 2015-01-09 2014-12-04 /pmc/articles/PMC4288175/ /pubmed/25477389 http://dx.doi.org/10.1093/nar/gku1281 Text en © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | RNA Takemoto, Norihiko Tanaka, Yuya Inui, Masayuki Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum |
title | Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum |
title_full | Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum |
title_fullStr | Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum |
title_full_unstemmed | Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum |
title_short | Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum |
title_sort | rho and rnase play a central role in fmn riboswitch regulation in corynebacterium glutamicum |
topic | RNA |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288175/ https://www.ncbi.nlm.nih.gov/pubmed/25477389 http://dx.doi.org/10.1093/nar/gku1281 |
work_keys_str_mv | AT takemotonorihiko rhoandrnaseplayacentralroleinfmnriboswitchregulationincorynebacteriumglutamicum AT tanakayuya rhoandrnaseplayacentralroleinfmnriboswitchregulationincorynebacteriumglutamicum AT inuimasayuki rhoandrnaseplayacentralroleinfmnriboswitchregulationincorynebacteriumglutamicum |