Cargando…

Subgenomic promoter recognition by the norovirus RNA-dependent RNA polymerases

The replication enzyme of RNA viruses must preferentially recognize their RNAs in an environment that contains an abundance of cellular RNAs. The factors responsible for specific RNA recognition are not well understood, in part because viral RNA synthesis takes place within enzyme complexes associat...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Xiaoyan, Thorne, Lucy, Jin, Zhinan, Hammad, Loubna A., Li, Serena, Deval, Jerome, Goodfellow, Ian G., Kao, C. Cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288183/
https://www.ncbi.nlm.nih.gov/pubmed/25520198
http://dx.doi.org/10.1093/nar/gku1292
Descripción
Sumario:The replication enzyme of RNA viruses must preferentially recognize their RNAs in an environment that contains an abundance of cellular RNAs. The factors responsible for specific RNA recognition are not well understood, in part because viral RNA synthesis takes place within enzyme complexes associated with modified cellular membrane compartments. Recombinant RNA-dependent RNA polymerases (RdRps) from the human norovirus and the murine norovirus (MNV) were found to preferentially recognize RNA segments that contain the promoter and a short template sequence for subgenomic RNA synthesis. Both the promoter and template sequence contribute to stable RdRp binding, accurate initiation of the subgenomic RNAs and efficient RNA synthesis. Using a method that combines RNA crosslinking and mass spectrometry, residues near the template channel of the MNV RdRp were found to contact the hairpin RNA motif. Mutations in the hairpin contact site in the MNV RdRp reduced MNV replication and virus production in cells. This work demonstrates that the specific recognition of the norovirus subgenomic promoter is through binding by the viral RdRp.