Cargando…

Matrix protein CCN1 induced by bacterial DNA and CpG ODN limits lung inflammation and contributes to innate immune homeostasis

To defend against pulmonary infections, lung epithelial cells are equipped with complex innate immunity closely linked to inflammation. Dysregulated innate immunity / inflammation leads to self-perpetuating lung injury. The CpG motif in bacterial DNA is one of the factors involved in bacterial infec...

Descripción completa

Detalles Bibliográficos
Autores principales: Moon, Hyung-Geun, Qin, Zhaoping, Quan, Taihao, Xie, Lixin, Dela Cruz, Charles S., Jin, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289128/
https://www.ncbi.nlm.nih.gov/pubmed/25005359
http://dx.doi.org/10.1038/mi.2014.62
Descripción
Sumario:To defend against pulmonary infections, lung epithelial cells are equipped with complex innate immunity closely linked to inflammation. Dysregulated innate immunity / inflammation leads to self-perpetuating lung injury. The CpG motif in bacterial DNA is one of the factors involved in bacterial infection-associated inflammation. Bacterial DNA and synthetic CpG oligonucleotide (ODN) induced CCN1 secretion from lung epithelial cells, functioning as a potential “braking” signal to prevent uncontrolled inflammatory responses. CpG ODN-induced ER stress resulted in Src-Y527 phosphorylation (pY527) and Src/CCN1 vWF domain dissociation. Src-Y527 activated caveolin-1 (cav-1) phosphorylation at Y14 and then modulated CCN1 secretion via pCav-1 interaction with CCN1 IGFbp domain. Functionally, secreted CCN1 promoted anti-inflammatory cytokine IL-10 release from epithelial cells via integrin αVβ6 PKC, and this subsequently suppressed TNF-α, MIP-2 secretion and neutrophil infiltration in the lungs. Collectively, bacterial DNA/CpG ODN-stimulated CCN1 secretion via BiP/GRP78-Src(Y527)-JNK-Cav-1(Y14) pathway and CpG-induced CCN1 conferred anti-inflammatory roles. Our studies suggested a novel paradigm by which the lung epithelium maintains innate immune homeostasis after bacterial infection.