Cargando…
High resolution surface plasmon resonance imaging for single cells
BACKGROUND: Surface plasmon resonance imaging (SPRI) is a label-free technique that can image refractive index changes at an interface. We have previously used SPRI to study the dynamics of cell-substratum interactions. However, characterization of spatial resolution in 3 dimensions is necessary to...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289309/ https://www.ncbi.nlm.nih.gov/pubmed/25441447 http://dx.doi.org/10.1186/1471-2121-15-35 |
_version_ | 1782352089961201664 |
---|---|
author | Peterson, Alexander W Halter, Michael Tona, Alessandro Plant, Anne L |
author_facet | Peterson, Alexander W Halter, Michael Tona, Alessandro Plant, Anne L |
author_sort | Peterson, Alexander W |
collection | PubMed |
description | BACKGROUND: Surface plasmon resonance imaging (SPRI) is a label-free technique that can image refractive index changes at an interface. We have previously used SPRI to study the dynamics of cell-substratum interactions. However, characterization of spatial resolution in 3 dimensions is necessary to quantitatively interpret SPR images. Spatial resolution is complicated by the asymmetric propagation length of surface plasmons in the x and y dimensions leading to image degradation in one direction. Inferring the distance of intracellular organelles and other subcellular features from the interface by SPRI is complicated by uncertainties regarding the detection of the evanescent wave decay into cells. This study provides an experimental basis for characterizing the resolution of an SPR imaging system in the lateral and distal dimensions and demonstrates a novel approach for resolving sub-micrometer cellular structures by SPRI. The SPRI resolution here is distinct in its ability to visualize subcellular structures that are in proximity to a surface, which is comparable with that of total internal reflection fluorescence (TIRF) microscopy but has the advantage of no fluorescent labels. RESULTS: An SPR imaging system was designed that uses a high numerical aperture objective lens to image cells and a digital light projector to pattern the angle of the incident excitation on the sample. Cellular components such as focal adhesions, nucleus, and cellular secretions are visualized. The point spread function of polymeric nanoparticle beads indicates near-diffraction limited spatial resolution. To characterize the z-axis response, we used micrometer scale polymeric beads with a refractive index similar to cells as reference materials to determine the detection limit of the SPR field as a function of distance from the substrate. Multi-wavelength measurements of these microspheres show that it is possible to tailor the effective depth of penetration of the evanescent wave into the cellular environment. CONCLUSION: We describe how the use of patterned incident light provides SPRI at high spatial resolution, and we characterize a finite limit of detection for penetration depth. We demonstrate the application of a novel technique that allows unprecedented subcellular detail for SPRI, and enables a quantitative interpretation of SPRI for subcellular imaging. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2121-15-35) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4289309 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42893092015-01-11 High resolution surface plasmon resonance imaging for single cells Peterson, Alexander W Halter, Michael Tona, Alessandro Plant, Anne L BMC Cell Biol Methodology Article BACKGROUND: Surface plasmon resonance imaging (SPRI) is a label-free technique that can image refractive index changes at an interface. We have previously used SPRI to study the dynamics of cell-substratum interactions. However, characterization of spatial resolution in 3 dimensions is necessary to quantitatively interpret SPR images. Spatial resolution is complicated by the asymmetric propagation length of surface plasmons in the x and y dimensions leading to image degradation in one direction. Inferring the distance of intracellular organelles and other subcellular features from the interface by SPRI is complicated by uncertainties regarding the detection of the evanescent wave decay into cells. This study provides an experimental basis for characterizing the resolution of an SPR imaging system in the lateral and distal dimensions and demonstrates a novel approach for resolving sub-micrometer cellular structures by SPRI. The SPRI resolution here is distinct in its ability to visualize subcellular structures that are in proximity to a surface, which is comparable with that of total internal reflection fluorescence (TIRF) microscopy but has the advantage of no fluorescent labels. RESULTS: An SPR imaging system was designed that uses a high numerical aperture objective lens to image cells and a digital light projector to pattern the angle of the incident excitation on the sample. Cellular components such as focal adhesions, nucleus, and cellular secretions are visualized. The point spread function of polymeric nanoparticle beads indicates near-diffraction limited spatial resolution. To characterize the z-axis response, we used micrometer scale polymeric beads with a refractive index similar to cells as reference materials to determine the detection limit of the SPR field as a function of distance from the substrate. Multi-wavelength measurements of these microspheres show that it is possible to tailor the effective depth of penetration of the evanescent wave into the cellular environment. CONCLUSION: We describe how the use of patterned incident light provides SPRI at high spatial resolution, and we characterize a finite limit of detection for penetration depth. We demonstrate the application of a novel technique that allows unprecedented subcellular detail for SPRI, and enables a quantitative interpretation of SPRI for subcellular imaging. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2121-15-35) contains supplementary material, which is available to authorized users. BioMed Central 2014-12-01 /pmc/articles/PMC4289309/ /pubmed/25441447 http://dx.doi.org/10.1186/1471-2121-15-35 Text en © Peterson et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Article Peterson, Alexander W Halter, Michael Tona, Alessandro Plant, Anne L High resolution surface plasmon resonance imaging for single cells |
title | High resolution surface plasmon resonance imaging for single cells |
title_full | High resolution surface plasmon resonance imaging for single cells |
title_fullStr | High resolution surface plasmon resonance imaging for single cells |
title_full_unstemmed | High resolution surface plasmon resonance imaging for single cells |
title_short | High resolution surface plasmon resonance imaging for single cells |
title_sort | high resolution surface plasmon resonance imaging for single cells |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289309/ https://www.ncbi.nlm.nih.gov/pubmed/25441447 http://dx.doi.org/10.1186/1471-2121-15-35 |
work_keys_str_mv | AT petersonalexanderw highresolutionsurfaceplasmonresonanceimagingforsinglecells AT haltermichael highresolutionsurfaceplasmonresonanceimagingforsinglecells AT tonaalessandro highresolutionsurfaceplasmonresonanceimagingforsinglecells AT plantannel highresolutionsurfaceplasmonresonanceimagingforsinglecells |