Cargando…
Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds
BACKGROUND: The B-subunit of Shiga toxin (STxB) specifically binds to the glycosphingolipid Gb3 that is highly expressed on a number of human tumors and has been shown to target tumor cells in mouse models and ex vivo on primary colon carcinoma specimen. METHODS: Using a novel ex vivo STxB labeling...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289340/ https://www.ncbi.nlm.nih.gov/pubmed/25476116 http://dx.doi.org/10.1186/1471-2407-14-916 |
_version_ | 1782352097335836672 |
---|---|
author | Stimmer, Lev Dehay, Sabrina Nemati, Fariba Massonnet, Gerald Richon, Sophie Decaudin, Didier Klijanienko, Jerzy Johannes, Ludger |
author_facet | Stimmer, Lev Dehay, Sabrina Nemati, Fariba Massonnet, Gerald Richon, Sophie Decaudin, Didier Klijanienko, Jerzy Johannes, Ludger |
author_sort | Stimmer, Lev |
collection | PubMed |
description | BACKGROUND: The B-subunit of Shiga toxin (STxB) specifically binds to the glycosphingolipid Gb3 that is highly expressed on a number of human tumors and has been shown to target tumor cells in mouse models and ex vivo on primary colon carcinoma specimen. METHODS: Using a novel ex vivo STxB labeling (ESL) method we studied Gb3 expression in cytological specimens of primary human breast tumors from 107 patients, and in synchronous lymph node metastases from 20 patients. Fluorescent STxB was incubated with fine-needle aspiration (FNA) specimens, and Gb3 expression was evaluated by fluorescence microscopy. Furthermore, 11 patient-derived human breast cancer xenografts (HBCx) were evaluated for expression of Gb3 by ESL and FACS. In addition, the biodistribution of fluorescent STxB conjugate was studied after intravenous injection in a Gb3 positive HBCx model. RESULTS: Gb3 expression was detected in 62 of 107 patients (57.9%), mainly in epithelial tumor cells. Gb3 positivity correlated with estrogen receptor expression (p ≤ 0.01), whereas absence of Gb3 expression in primary tumors was correlated with the presence of lymph node metastases (p ≤ 0.03). 65% of lymph node metastases were Gb3 positive and in 40% of tested patients, we observed a statistically significant increase of metastatic Gb3 expression (p ≤ 0.04). Using concordant ESL and flow cytometry analysis, 6 out of 11 HBCx samples were scored positive. Intravenous injections of fluorescent STxB into HBC xenografted mice showed preferential STxB accumulation in epithelial cells and cells with endothelial morphology of the tumor. CONCLUSION: The enhanced expression of Gb3 in primary breast carcinomas and its lymph node metastases indicate that the development of STxB-based therapeutic strategies is of interest in this pathology. Gb3 expressing HBCx can be used as a model for preclinical studies with STxB conjugates. Finally, the ESL technique on FNA represents a rapid and cost effective method for the stratification of patients in future clinical trials. |
format | Online Article Text |
id | pubmed-4289340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42893402015-01-11 Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds Stimmer, Lev Dehay, Sabrina Nemati, Fariba Massonnet, Gerald Richon, Sophie Decaudin, Didier Klijanienko, Jerzy Johannes, Ludger BMC Cancer Research Article BACKGROUND: The B-subunit of Shiga toxin (STxB) specifically binds to the glycosphingolipid Gb3 that is highly expressed on a number of human tumors and has been shown to target tumor cells in mouse models and ex vivo on primary colon carcinoma specimen. METHODS: Using a novel ex vivo STxB labeling (ESL) method we studied Gb3 expression in cytological specimens of primary human breast tumors from 107 patients, and in synchronous lymph node metastases from 20 patients. Fluorescent STxB was incubated with fine-needle aspiration (FNA) specimens, and Gb3 expression was evaluated by fluorescence microscopy. Furthermore, 11 patient-derived human breast cancer xenografts (HBCx) were evaluated for expression of Gb3 by ESL and FACS. In addition, the biodistribution of fluorescent STxB conjugate was studied after intravenous injection in a Gb3 positive HBCx model. RESULTS: Gb3 expression was detected in 62 of 107 patients (57.9%), mainly in epithelial tumor cells. Gb3 positivity correlated with estrogen receptor expression (p ≤ 0.01), whereas absence of Gb3 expression in primary tumors was correlated with the presence of lymph node metastases (p ≤ 0.03). 65% of lymph node metastases were Gb3 positive and in 40% of tested patients, we observed a statistically significant increase of metastatic Gb3 expression (p ≤ 0.04). Using concordant ESL and flow cytometry analysis, 6 out of 11 HBCx samples were scored positive. Intravenous injections of fluorescent STxB into HBC xenografted mice showed preferential STxB accumulation in epithelial cells and cells with endothelial morphology of the tumor. CONCLUSION: The enhanced expression of Gb3 in primary breast carcinomas and its lymph node metastases indicate that the development of STxB-based therapeutic strategies is of interest in this pathology. Gb3 expressing HBCx can be used as a model for preclinical studies with STxB conjugates. Finally, the ESL technique on FNA represents a rapid and cost effective method for the stratification of patients in future clinical trials. BioMed Central 2014-12-04 /pmc/articles/PMC4289340/ /pubmed/25476116 http://dx.doi.org/10.1186/1471-2407-14-916 Text en © Stimmer et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Stimmer, Lev Dehay, Sabrina Nemati, Fariba Massonnet, Gerald Richon, Sophie Decaudin, Didier Klijanienko, Jerzy Johannes, Ludger Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds |
title | Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds |
title_full | Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds |
title_fullStr | Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds |
title_full_unstemmed | Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds |
title_short | Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds |
title_sort | human breast cancer and lymph node metastases express gb3 and can be targeted by stxb-vectorized chemotherapeutic compounds |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289340/ https://www.ncbi.nlm.nih.gov/pubmed/25476116 http://dx.doi.org/10.1186/1471-2407-14-916 |
work_keys_str_mv | AT stimmerlev humanbreastcancerandlymphnodemetastasesexpressgb3andcanbetargetedbystxbvectorizedchemotherapeuticcompounds AT dehaysabrina humanbreastcancerandlymphnodemetastasesexpressgb3andcanbetargetedbystxbvectorizedchemotherapeuticcompounds AT nematifariba humanbreastcancerandlymphnodemetastasesexpressgb3andcanbetargetedbystxbvectorizedchemotherapeuticcompounds AT massonnetgerald humanbreastcancerandlymphnodemetastasesexpressgb3andcanbetargetedbystxbvectorizedchemotherapeuticcompounds AT richonsophie humanbreastcancerandlymphnodemetastasesexpressgb3andcanbetargetedbystxbvectorizedchemotherapeuticcompounds AT decaudindidier humanbreastcancerandlymphnodemetastasesexpressgb3andcanbetargetedbystxbvectorizedchemotherapeuticcompounds AT klijanienkojerzy humanbreastcancerandlymphnodemetastasesexpressgb3andcanbetargetedbystxbvectorizedchemotherapeuticcompounds AT johannesludger humanbreastcancerandlymphnodemetastasesexpressgb3andcanbetargetedbystxbvectorizedchemotherapeuticcompounds |