Cargando…

The Effects of Babesiosis on Oxidative Stress and DNA Damage in Anatolian Black Goats Naturally Infected with Babesia ovis

BACKGROUND: A reactive oxygen and nitrogen intermediate produced during an inflammatory response is the important part of host-defense strategies of organisms to kill the parasite. However, it is not well known whether these intermediates cause DNA damage and oxidative stress in goats infected with...

Descripción completa

Detalles Bibliográficos
Autores principales: KUCUKKURT, Ismail, CIGERCI, I. Hakki, INCE, Sinan, KOZAN, Esma, AYTEKIN, Ismail, ERYAVUZ, Abdullah, FIDAN, A. Fatih
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tehran University of Medical Sciences 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289885/
https://www.ncbi.nlm.nih.gov/pubmed/25642264
Descripción
Sumario:BACKGROUND: A reactive oxygen and nitrogen intermediate produced during an inflammatory response is the important part of host-defense strategies of organisms to kill the parasite. However, it is not well known whether these intermediates cause DNA damage and oxidative stress in goats infected with Babesia ovis. The purpose of this study was to clarify the effects of babesiosis on basal levels of DNA damage and oxidative status of goats naturally infected with B.ovis. METHODS: DNA damage and antioxidant parameters were determined in B. ovis infected goats. Ten infected Anatolian Black Goats with B. ovis diagnosed via clinical signs and microscopic findings and ten healthy were used in the study. RESULTS: The Babesia infection increased the levels of DNA damage, malondialdehyde (MDA), protein carbonyl content (PCO) and plasma concentration of nitric oxide metabolites (NOx), and decreased total antioxidant activities (AOA) and reduced glutathione (GSH). A significant positive correlation between DNA damage, MDA, PCO, and NOx concentrations was found in the infected goats. DNA damage showed a negative association with AOA and GSH concentrations in the infected goats. CONCLUSION: The Babesia infection increases oxidative stress markers and DNA damage and decreases AOA in goats. These results suggest that the increases in the production of free radicals due to Babesia infection not only contribute to host-defense strategies of organisms to kill the parasite but also induce oxidative damage in other cells.