Cargando…
Group-PCA for very large fMRI datasets
Increasingly-large datasets (for example, the resting-state fMRI data from the Human Connectome Project) are demanding analyses that are problematic because of the sheer scale of the aggregate data. We present two approaches for applying group-level PCA; both give a close approximation to the output...
Autores principales: | Smith, Stephen M., Hyvärinen, Aapo, Varoquaux, Gaël, Miller, Karla L., Beckmann, Christian F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289914/ https://www.ncbi.nlm.nih.gov/pubmed/25094018 http://dx.doi.org/10.1016/j.neuroimage.2014.07.051 |
Ejemplares similares
-
Which fMRI clustering gives good brain parcellations?
por: Thirion, Bertrand, et al.
Publicado: (2014) -
Spatial vs. Temporal Features in ICA of Resting-State fMRI – A Quantitative and Qualitative Investigation in the Context of Response Inhibition
por: Tian, Lixia, et al.
Publicado: (2013) -
Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping
por: Pinho, Ana Luísa, et al.
Publicado: (2018) -
A large-scale fMRI dataset for human action recognition
por: Zhou, Ming, et al.
Publicado: (2023) -
A large-scale fMRI dataset for the visual processing of naturalistic scenes
por: Gong, Zhengxin, et al.
Publicado: (2023)