Cargando…
lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain
We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating no...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290594/ https://www.ncbi.nlm.nih.gov/pubmed/25628600 http://dx.doi.org/10.3389/fneur.2014.00290 |
_version_ | 1782352269052739584 |
---|---|
author | Sepehrband, Farshid Choupan, Jeiran Caruyer, Emmanuel Kurniawan, Nyoman D. Gal, Yaniv Tieng, Quang M. McMahon, Katie L. Vegh, Viktor Reutens, David C. Yang, Zhengyi |
author_facet | Sepehrband, Farshid Choupan, Jeiran Caruyer, Emmanuel Kurniawan, Nyoman D. Gal, Yaniv Tieng, Quang M. McMahon, Katie L. Vegh, Viktor Reutens, David C. Yang, Zhengyi |
author_sort | Sepehrband, Farshid |
collection | PubMed |
description | We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method. |
format | Online Article Text |
id | pubmed-4290594 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-42905942015-01-27 lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain Sepehrband, Farshid Choupan, Jeiran Caruyer, Emmanuel Kurniawan, Nyoman D. Gal, Yaniv Tieng, Quang M. McMahon, Katie L. Vegh, Viktor Reutens, David C. Yang, Zhengyi Front Neurol Neuroscience We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method. Frontiers Media S.A. 2015-01-12 /pmc/articles/PMC4290594/ /pubmed/25628600 http://dx.doi.org/10.3389/fneur.2014.00290 Text en Copyright © 2015 Sepehrband, Choupan, Caruyer, Kurniawan, Gal, Tieng, McMahon, Vegh, Reutens and Yang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Sepehrband, Farshid Choupan, Jeiran Caruyer, Emmanuel Kurniawan, Nyoman D. Gal, Yaniv Tieng, Quang M. McMahon, Katie L. Vegh, Viktor Reutens, David C. Yang, Zhengyi lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain |
title | lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain |
title_full | lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain |
title_fullStr | lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain |
title_full_unstemmed | lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain |
title_short | lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain |
title_sort | lop-dwi: a novel scheme for pre-processing of diffusion-weighted images in the gradient direction domain |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290594/ https://www.ncbi.nlm.nih.gov/pubmed/25628600 http://dx.doi.org/10.3389/fneur.2014.00290 |
work_keys_str_mv | AT sepehrbandfarshid lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT choupanjeiran lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT caruyeremmanuel lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT kurniawannyomand lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT galyaniv lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT tiengquangm lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT mcmahonkatiel lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT veghviktor lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT reutensdavidc lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain AT yangzhengyi lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain |