Cargando…

lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain

We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating no...

Descripción completa

Detalles Bibliográficos
Autores principales: Sepehrband, Farshid, Choupan, Jeiran, Caruyer, Emmanuel, Kurniawan, Nyoman D., Gal, Yaniv, Tieng, Quang M., McMahon, Katie L., Vegh, Viktor, Reutens, David C., Yang, Zhengyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290594/
https://www.ncbi.nlm.nih.gov/pubmed/25628600
http://dx.doi.org/10.3389/fneur.2014.00290
_version_ 1782352269052739584
author Sepehrband, Farshid
Choupan, Jeiran
Caruyer, Emmanuel
Kurniawan, Nyoman D.
Gal, Yaniv
Tieng, Quang M.
McMahon, Katie L.
Vegh, Viktor
Reutens, David C.
Yang, Zhengyi
author_facet Sepehrband, Farshid
Choupan, Jeiran
Caruyer, Emmanuel
Kurniawan, Nyoman D.
Gal, Yaniv
Tieng, Quang M.
McMahon, Katie L.
Vegh, Viktor
Reutens, David C.
Yang, Zhengyi
author_sort Sepehrband, Farshid
collection PubMed
description We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method.
format Online
Article
Text
id pubmed-4290594
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-42905942015-01-27 lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain Sepehrband, Farshid Choupan, Jeiran Caruyer, Emmanuel Kurniawan, Nyoman D. Gal, Yaniv Tieng, Quang M. McMahon, Katie L. Vegh, Viktor Reutens, David C. Yang, Zhengyi Front Neurol Neuroscience We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method. Frontiers Media S.A. 2015-01-12 /pmc/articles/PMC4290594/ /pubmed/25628600 http://dx.doi.org/10.3389/fneur.2014.00290 Text en Copyright © 2015 Sepehrband, Choupan, Caruyer, Kurniawan, Gal, Tieng, McMahon, Vegh, Reutens and Yang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Sepehrband, Farshid
Choupan, Jeiran
Caruyer, Emmanuel
Kurniawan, Nyoman D.
Gal, Yaniv
Tieng, Quang M.
McMahon, Katie L.
Vegh, Viktor
Reutens, David C.
Yang, Zhengyi
lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain
title lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain
title_full lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain
title_fullStr lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain
title_full_unstemmed lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain
title_short lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain
title_sort lop-dwi: a novel scheme for pre-processing of diffusion-weighted images in the gradient direction domain
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290594/
https://www.ncbi.nlm.nih.gov/pubmed/25628600
http://dx.doi.org/10.3389/fneur.2014.00290
work_keys_str_mv AT sepehrbandfarshid lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT choupanjeiran lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT caruyeremmanuel lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT kurniawannyomand lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT galyaniv lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT tiengquangm lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT mcmahonkatiel lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT veghviktor lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT reutensdavidc lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain
AT yangzhengyi lopdwianovelschemeforpreprocessingofdiffusionweightedimagesinthegradientdirectiondomain