Cargando…

Rule discovery and distance separation to detect reliable miRNA biomarkers for the diagnosis of lung squamous cell carcinoma

BACKGROUND: Altered expression profiles of microRNAs (miRNAs) are linked to many diseases including lung cancer. miRNA expression profiling is reproducible and miRNAs are very stable. These characteristics of miRNAs make them ideal biomarker candidates. METHOD: This work is aimed to detect 2-and 3-m...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Renhua, Liu, Qian, Hutvagner, Gyorgy, Nguyen, Hung, Ramamohanarao, Kotagiri, Wong, Limsoon, Li, Jinyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290601/
https://www.ncbi.nlm.nih.gov/pubmed/25521201
http://dx.doi.org/10.1186/1471-2164-15-S9-S16
_version_ 1782352270219804672
author Song, Renhua
Liu, Qian
Hutvagner, Gyorgy
Nguyen, Hung
Ramamohanarao, Kotagiri
Wong, Limsoon
Li, Jinyan
author_facet Song, Renhua
Liu, Qian
Hutvagner, Gyorgy
Nguyen, Hung
Ramamohanarao, Kotagiri
Wong, Limsoon
Li, Jinyan
author_sort Song, Renhua
collection PubMed
description BACKGROUND: Altered expression profiles of microRNAs (miRNAs) are linked to many diseases including lung cancer. miRNA expression profiling is reproducible and miRNAs are very stable. These characteristics of miRNAs make them ideal biomarker candidates. METHOD: This work is aimed to detect 2-and 3-miRNA groups, together with specific expression ranges of these miRNAs, to form simple linear discriminant rules for biomarker identification and biological interpretation. Our method is based on a novel committee of decision trees to derive 2-and 3-miRNA 100%-frequency rules. This method is applied to a data set of lung miRNA expression profiles of 61 squamous cell carcinoma (SCC) samples and 10 normal tissue samples. A distance separation technique is used to select the most reliable rules which are then evaluated on a large independent data set. RESULTS: We obtained four 2-miRNA and three 3-miRNA top-ranked rules. One important rule is that: If the expression level of miR-98 is above 7.356 and the expression level of miR-205 is below 9.601 (log2 quantile normalized MirVan miRNA Bioarray signals), then the sample is normal rather than cancerous with specificity and sensitivity both 100%. The classification performance of our best miRNA rules remarkably outperformed that by randomly selected miRNA rules. Our data analysis also showed that miR-98 and miR-205 have two common predicted target genes FZD3 and RPS6KA3, which are actually genes associated with carcinoma according to the Online Mendelian Inheritance in Man (OMIM) database. We also found that most of the chromosomal loci of these miRNAs have a high frequency of genomic alteration in lung cancer. On the independent data set (with balanced controls), the three miRNAs miR-126, miR-205 and miR-182 from our best rule can separate the two classes of samples at the accuracy of 84.49%, sensitivity of 91.40% and specificity of 77.14%. CONCLUSION: Our results indicate that rule discovery followed by distance separation is a powerful computational method to identify reliable miRNA biomarkers. The visualization of the rules and the clear separation between the normal and cancer samples by our rules will help biology experts for their analysis and biological interpretation.
format Online
Article
Text
id pubmed-4290601
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-42906012015-01-15 Rule discovery and distance separation to detect reliable miRNA biomarkers for the diagnosis of lung squamous cell carcinoma Song, Renhua Liu, Qian Hutvagner, Gyorgy Nguyen, Hung Ramamohanarao, Kotagiri Wong, Limsoon Li, Jinyan BMC Genomics Research BACKGROUND: Altered expression profiles of microRNAs (miRNAs) are linked to many diseases including lung cancer. miRNA expression profiling is reproducible and miRNAs are very stable. These characteristics of miRNAs make them ideal biomarker candidates. METHOD: This work is aimed to detect 2-and 3-miRNA groups, together with specific expression ranges of these miRNAs, to form simple linear discriminant rules for biomarker identification and biological interpretation. Our method is based on a novel committee of decision trees to derive 2-and 3-miRNA 100%-frequency rules. This method is applied to a data set of lung miRNA expression profiles of 61 squamous cell carcinoma (SCC) samples and 10 normal tissue samples. A distance separation technique is used to select the most reliable rules which are then evaluated on a large independent data set. RESULTS: We obtained four 2-miRNA and three 3-miRNA top-ranked rules. One important rule is that: If the expression level of miR-98 is above 7.356 and the expression level of miR-205 is below 9.601 (log2 quantile normalized MirVan miRNA Bioarray signals), then the sample is normal rather than cancerous with specificity and sensitivity both 100%. The classification performance of our best miRNA rules remarkably outperformed that by randomly selected miRNA rules. Our data analysis also showed that miR-98 and miR-205 have two common predicted target genes FZD3 and RPS6KA3, which are actually genes associated with carcinoma according to the Online Mendelian Inheritance in Man (OMIM) database. We also found that most of the chromosomal loci of these miRNAs have a high frequency of genomic alteration in lung cancer. On the independent data set (with balanced controls), the three miRNAs miR-126, miR-205 and miR-182 from our best rule can separate the two classes of samples at the accuracy of 84.49%, sensitivity of 91.40% and specificity of 77.14%. CONCLUSION: Our results indicate that rule discovery followed by distance separation is a powerful computational method to identify reliable miRNA biomarkers. The visualization of the rules and the clear separation between the normal and cancer samples by our rules will help biology experts for their analysis and biological interpretation. BioMed Central 2014-12-08 /pmc/articles/PMC4290601/ /pubmed/25521201 http://dx.doi.org/10.1186/1471-2164-15-S9-S16 Text en Copyright © 2014 Song et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Song, Renhua
Liu, Qian
Hutvagner, Gyorgy
Nguyen, Hung
Ramamohanarao, Kotagiri
Wong, Limsoon
Li, Jinyan
Rule discovery and distance separation to detect reliable miRNA biomarkers for the diagnosis of lung squamous cell carcinoma
title Rule discovery and distance separation to detect reliable miRNA biomarkers for the diagnosis of lung squamous cell carcinoma
title_full Rule discovery and distance separation to detect reliable miRNA biomarkers for the diagnosis of lung squamous cell carcinoma
title_fullStr Rule discovery and distance separation to detect reliable miRNA biomarkers for the diagnosis of lung squamous cell carcinoma
title_full_unstemmed Rule discovery and distance separation to detect reliable miRNA biomarkers for the diagnosis of lung squamous cell carcinoma
title_short Rule discovery and distance separation to detect reliable miRNA biomarkers for the diagnosis of lung squamous cell carcinoma
title_sort rule discovery and distance separation to detect reliable mirna biomarkers for the diagnosis of lung squamous cell carcinoma
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290601/
https://www.ncbi.nlm.nih.gov/pubmed/25521201
http://dx.doi.org/10.1186/1471-2164-15-S9-S16
work_keys_str_mv AT songrenhua rulediscoveryanddistanceseparationtodetectreliablemirnabiomarkersforthediagnosisoflungsquamouscellcarcinoma
AT liuqian rulediscoveryanddistanceseparationtodetectreliablemirnabiomarkersforthediagnosisoflungsquamouscellcarcinoma
AT hutvagnergyorgy rulediscoveryanddistanceseparationtodetectreliablemirnabiomarkersforthediagnosisoflungsquamouscellcarcinoma
AT nguyenhung rulediscoveryanddistanceseparationtodetectreliablemirnabiomarkersforthediagnosisoflungsquamouscellcarcinoma
AT ramamohanaraokotagiri rulediscoveryanddistanceseparationtodetectreliablemirnabiomarkersforthediagnosisoflungsquamouscellcarcinoma
AT wonglimsoon rulediscoveryanddistanceseparationtodetectreliablemirnabiomarkersforthediagnosisoflungsquamouscellcarcinoma
AT lijinyan rulediscoveryanddistanceseparationtodetectreliablemirnabiomarkersforthediagnosisoflungsquamouscellcarcinoma