Cargando…
Semi-supervised multi-label collective classification ensemble for functional genomics
BACKGROUND: With the rapid accumulation of proteomic and genomic datasets in terms of genome-scale features and interaction networks through high-throughput experimental techniques, the process of manual predicting functional properties of the proteins has become increasingly cumbersome, and computa...
Autores principales: | Wu, Qingyao, Ye, Yunming, Ho, Shen-Shyang, Zhou, Shuigeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290603/ https://www.ncbi.nlm.nih.gov/pubmed/25521242 http://dx.doi.org/10.1186/1471-2164-15-S9-S17 |
Ejemplares similares
-
Hyperspectral Image Labeling and Classification Using an Ensemble Semi-Supervised Machine Learning Approach
por: Manian, Vidya, et al.
Publicado: (2022) -
Collective prediction of protein functions from protein-protein interaction networks
por: Wu, Qingyao, et al.
Publicado: (2014) -
Semi-Supervised Domain Adaptation for Multi-Label Classification on Nonintrusive Load Monitoring
por: Hur, Cheong-Hwan, et al.
Publicado: (2022) -
Semi-supervised multi-label classification using an extended graph-based manifold regularization
por: Li, Ding, et al.
Publicado: (2022) -
Pseudo-Labeling Optimization Based Ensemble Semi-Supervised Soft Sensor in the Process Industry
por: Li, Youwei, et al.
Publicado: (2021)