Cargando…
The Yeast Nucleosome Atlas (YNA) database: an integrative gene mining platform for studying chromatin structure and its regulation in yeast
BACKGROUND: Histone modification and remodeling play crucial roles in regulating gene transcription. These post-translational modifications of histones function in a combinatorial fashion and can be recognized by specific histone-binding proteins, thus regulating gene transcription. Therefore, under...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290617/ https://www.ncbi.nlm.nih.gov/pubmed/25522035 http://dx.doi.org/10.1186/1471-2164-15-S9-S5 |
Sumario: | BACKGROUND: Histone modification and remodeling play crucial roles in regulating gene transcription. These post-translational modifications of histones function in a combinatorial fashion and can be recognized by specific histone-binding proteins, thus regulating gene transcription. Therefore, understanding the combinatorial patterns of the histone code is vital to understanding the associated biological processes. However, most of the datasets regarding histone modification and chromatin regulation are scattered across various studies, and no comprehensive search and query tool has yet been made available to retrieve genes bearing specific histone modification patterns and regulatory proteins. DESCRIPTION: For this reason, we developed the Yeast Nucleosome Atlas database, or the YNA database, which integrates the available experimental data on nucleosome occupancy, histone modifications, the binding occupancy of regulatory proteins, and gene expression data, and provides the genome-wide gene miner to retrieve genes with a specific combination of these chromatin-related datasets. Moreover, the biological significance analyzer, which analyzes the enrichments of histone modifications, binding occupancy, transcription rate, and functionality of the retrieved genes, was constructed to help researchers to gain insight into the correlation among chromatin regulation and transcription. CONCLUSIONS: Compared to previously established genome browsing databases, YNA provides a powerful gene mining and retrieval interface, and is an investigation tool that can assist users to generate testable hypotheses for studying chromatin regulation during transcription. YNA is available online at http://cosbi3.ee.ncku.edu.tw/yna/. |
---|